1658. Minimum Operations to Reduce X to Zero
Description
You are given an integer array nums
and an integer x
. In one operation, you can either remove the leftmost or the rightmost element from the array nums
and subtract its value from x
. Note that this modifies the array for future operations.
Return the minimum number of operations to reduce x
to exactly 0
if it is possible, otherwise, return -1
.
Example 1:
Input: nums = [1,1,4,2,3], x = 5 Output: 2 Explanation: The optimal solution is to remove the last two elements to reduce x to zero.
Example 2:
Input: nums = [5,6,7,8,9], x = 4 Output: -1
Example 3:
Input: nums = [3,2,20,1,1,3], x = 10 Output: 5 Explanation: The optimal solution is to remove the last three elements and the first two elements (5 operations in total) to reduce x to zero.
Constraints:
1 <= nums.length <= 105
1 <= nums[i] <= 104
1 <= x <= 109
Solutions
Solution 1: Hash Table + Prefix Sum
According to the problem description, we need to remove elements from both ends of the array $nums$ so that the sum of the removed elements equals $x$, and the number of removed elements is minimized. We can transform the problem into: find the longest consecutive subarray in the array $nums$ such that the sum of the subarray $s = \sum_{i=0}^{n} nums[i] - x$. In this way, we can transform the problem into finding the length $mx$ of the longest consecutive subarray in the array $nums$ with a sum of $s$, and the answer is $n - mx$.
We initialize $mx = -1$, and then use a hash table $vis$ to store the prefix sum, where the key is the prefix sum and the value is the index corresponding to the prefix sum.
Traverse the array $nums$, for the current element $nums[i]$, calculate the prefix sum $t$, if $t$ is not in the hash table, add $t$ to the hash table; if $t - s$ is in the hash table, update $mx = \max(mx, i - vis[t - s])$.
Finally, if $mx = -1$, return $-1$, otherwise return $n - mx$.
The time complexity is $O(n)$, and the space complexity is $O(n)$. Where $n$ is the length of the array $nums$.
Python3
class Solution:
def minOperations(self, nums: List[int], x: int) -> int:
s = sum(nums) - x
vis = {0: -1}
mx, t = -1, 0
for i, v in enumerate(nums):
t += v
if t not in vis:
vis[t] = i
if t - s in vis:
mx = max(mx, i - vis[t - s])
return -1 if mx == -1 else len(nums) - mx
Java
class Solution {
public int minOperations(int[] nums, int x) {
int s = -x;
for (int v : nums) {
s += v;
}
Map<Integer, Integer> vis = new HashMap<>();
vis.put(0, -1);
int mx = -1, t = 0;
int n = nums.length;
for (int i = 0; i < n; ++i) {
t += nums[i];
vis.putIfAbsent(t, i);
if (vis.containsKey(t - s)) {
mx = Math.max(mx, i - vis.get(t - s));
}
}
return mx == -1 ? -1 : n - mx;
}
}
C++
class Solution {
public:
int minOperations(vector<int>& nums, int x) {
int s = accumulate(nums.begin(), nums.end(), 0) - x;
unordered_map<int, int> vis = {{0, -1}};
int mx = -1, t = 0;
int n = nums.size();
for (int i = 0; i < n; ++i) {
t += nums[i];
if (!vis.contains(t)) {
vis[t] = i;
}
if (vis.contains(t - s)) {
mx = max(mx, i - vis[t - s]);
}
}
return mx == -1 ? -1 : n - mx;
}
};
Go
func minOperations(nums []int, x int) int {
s := -x
for _, v := range nums {
s += v
}
vis := map[int]int{0: -1}
mx, t := -1, 0
for i, v := range nums {
t += v
if _, ok := vis[t]; !ok {
vis[t] = i
}
if j, ok := vis[t-s]; ok {
mx = max(mx, i-j)
}
}
if mx == -1 {
return -1
}
return len(nums) - mx
}
TypeScript
function minOperations(nums: number[], x: number): number {
const s = nums.reduce((acc, cur) => acc + cur, -x);
const vis: Map<number, number> = new Map([[0, -1]]);
let [mx, t] = [-1, 0];
const n = nums.length;
for (let i = 0; i < n; ++i) {
t += nums[i];
if (!vis.has(t)) {
vis.set(t, i);
}
if (vis.has(t - s)) {
mx = Math.max(mx, i - vis.get(t - s)!);
}
}
return ~mx ? n - mx : -1;
}
Rust
use std::collections::HashMap;
impl Solution {
pub fn min_operations(nums: Vec<i32>, x: i32) -> i32 {
let s = nums.iter().sum::<i32>() - x;
let mut vis: HashMap<i32, i32> = HashMap::new();
vis.insert(0, -1);
let mut mx = -1;
let mut t = 0;
for (i, v) in nums.iter().enumerate() {
t += v;
if !vis.contains_key(&t) {
vis.insert(t, i as i32);
}
if let Some(&j) = vis.get(&(t - s)) {
mx = mx.max((i as i32) - j);
}
}
if mx == -1 {
-1
} else {
(nums.len() as i32) - mx
}
}
}
Solution 2: Two Pointers
Based on the analysis of Solution 1, we need to find the length $mx$ of the longest consecutive subarray in the array $nums$ with a sum of $s$. Since all elements in the array $nums$ are positive integers, the prefix sum of the array will only increase monotonically, so we can use two pointers to solve this problem.
We initialize pointer $j = 0$, prefix sum $t = 0$, and the length of the longest consecutive subarray $mx = -1$.
Traverse the array $nums$, for the current element $nums[i]$, calculate the prefix sum $t += nums[i]$. If $t > s$, then move the pointer $j$ until $t \leq s$. If $t = s$, then update $mx = \max(mx, i - j + 1)$.
Finally, if $mx = -1$, return $-1$, otherwise return $n - mx$.
The time complexity is $O(n)$, where $n$ is the length of the array $nums$. The space complexity is $O(1)$.
Python3
class Solution:
def minOperations(self, nums: List[int], x: int) -> int:
s = sum(nums) - x
j = t = 0
mx = -1
for i, x in enumerate(nums):
t += x
while j <= i and t > s:
t -= nums[j]
j += 1
if t == s:
mx = max(mx, i - j + 1)
return -1 if mx == -1 else len(nums) - mx
Java
class Solution {
public int minOperations(int[] nums, int x) {
int s = -x;
for (int v : nums) {
s += v;
}
int mx = -1, t = 0;
int n = nums.length;
for (int i = 0, j = 0; i < n; ++i) {
t += nums[i];
while (j <= i && t > s) {
t -= nums[j++];
}
if (t == s) {
mx = Math.max(mx, i - j + 1);
}
}
return mx == -1 ? -1 : n - mx;
}
}
C++
class Solution {
public:
int minOperations(vector<int>& nums, int x) {
int s = accumulate(nums.begin(), nums.end(), 0) - x;
int mx = -1, t = 0;
int n = nums.size();
for (int i = 0, j = 0; i < n; ++i) {
t += nums[i];
while (j <= i && t > s) {
t -= nums[j++];
}
if (t == s) {
mx = max(mx, i - j + 1);
}
}
return mx == -1 ? -1 : n - mx;
}
};
Go
func minOperations(nums []int, x int) int {
s := -x
for _, v := range nums {
s += v
}
mx, t, j := -1, 0, 0
for i, v := range nums {
t += v
for ; j <= i && t > s; j++ {
t -= nums[j]
}
if t == s {
mx = max(mx, i-j+1)
}
}
if mx == -1 {
return -1
}
return len(nums) - mx
}
TypeScript
function minOperations(nums: number[], x: number): number {
const s = nums.reduce((acc, cur) => acc + cur, -x);
let [mx, t] = [-1, 0];
const n = nums.length;
for (let i = 0, j = 0; i < n; ++i) {
t += nums[i];
while (t > s) {
t -= nums[j++];
}
if (t === s) {
mx = Math.max(mx, i - j + 1);
}
}
return ~mx ? n - mx : -1;
}
Rust
impl Solution {
pub fn min_operations(nums: Vec<i32>, x: i32) -> i32 {
let s: i32 = nums.iter().sum::<i32>() - x;
let mut j: usize = 0;
let mut t: i32 = 0;
let mut mx: i32 = -1;
for (i, &v) in nums.iter().enumerate() {
t += v;
while j <= i && t > s {
t -= nums[j];
j += 1;
}
if t == s {
mx = mx.max((i - j + 1) as i32);
}
}
if mx == -1 {
-1
} else {
(nums.len() as i32) - mx
}
}
}