486. Predict the Winner
Description
You are given an integer array nums
. Two players are playing a game with this array: player 1 and player 2.
Player 1 and player 2 take turns, with player 1 starting first. Both players start the game with a score of 0
. At each turn, the player takes one of the numbers from either end of the array (i.e., nums[0]
or nums[nums.length - 1]
) which reduces the size of the array by 1
. The player adds the chosen number to their score. The game ends when there are no more elements in the array.
Return true
if Player 1 can win the game. If the scores of both players are equal, then player 1 is still the winner, and you should also return true
. You may assume that both players are playing optimally.
Example 1:
Input: nums = [1,5,2] Output: false Explanation: Initially, player 1 can choose between 1 and 2. If he chooses 2 (or 1), then player 2 can choose from 1 (or 2) and 5. If player 2 chooses 5, then player 1 will be left with 1 (or 2). So, final score of player 1 is 1 + 2 = 3, and player 2 is 5. Hence, player 1 will never be the winner and you need to return false.
Example 2:
Input: nums = [1,5,233,7] Output: true Explanation: Player 1 first chooses 1. Then player 2 has to choose between 5 and 7. No matter which number player 2 choose, player 1 can choose 233. Finally, player 1 has more score (234) than player 2 (12), so you need to return True representing player1 can win.
Constraints:
1 <= nums.length <= 20
0 <= nums[i] <= 107
Solutions
Solution 1: Memoization Search
We design a function $\textit{dfs}(i, j)$, which represents the maximum difference in scores between the current player and the other player from the $i$-th number to the $j$-th number. The answer is $\textit{dfs}(0, n - 1) \geq 0$.
The function $\textit{dfs}(i, j)$ is calculated as follows:
If $i > j$, it means there are no numbers left, so the current player cannot take any points, and the difference is $0$, i.e., $\textit{dfs}(i, j) = 0$.
Otherwise, the current player has two choices. If they choose the $i$-th number, the difference in scores between the current player and the other player is $\textit{nums}[i] - \textit{dfs}(i + 1, j)$. If they choose the $j$-th number, the difference in scores between the current player and the other player is $\textit{nums}[j] - \textit{dfs}(i, j - 1)$. The current player will choose the option with the larger difference, so $\textit{dfs}(i, j) = \max(\textit{nums}[i] - \textit{dfs}(i + 1, j), \textit{nums}[j] - \textit{dfs}(i, j - 1))$.
Finally, we only need to check if $\textit{dfs}(0, n - 1) \geq 0$.
To avoid repeated calculations, we can use memoization. We use an array $f$ to record all the values of $\textit{dfs}(i, j)$. When the function is called again, we can directly retrieve the answer from $f$ without recalculating it.
The time complexity is $O(n^2)$, and the space complexity is $O(n^2)$. Here, $n$ is the length of the array $\textit{nums}$.
Python3
class Solution:
def predictTheWinner(self, nums: List[int]) -> bool:
@cache
def dfs(i: int, j: int) -> int:
if i > j:
return 0
return max(nums[i] - dfs(i + 1, j), nums[j] - dfs(i, j - 1))
return dfs(0, len(nums) - 1) >= 0
Java
class Solution {
private int[] nums;
private int[][] f;
public boolean predictTheWinner(int[] nums) {
this.nums = nums;
int n = nums.length;
f = new int[n][n];
return dfs(0, n - 1) >= 0;
}
private int dfs(int i, int j) {
if (i > j) {
return 0;
}
if (f[i][j] != 0) {
return f[i][j];
}
return f[i][j] = Math.max(nums[i] - dfs(i + 1, j), nums[j] - dfs(i, j - 1));
}
}
C++
class Solution {
public:
bool predictTheWinner(vector<int>& nums) {
int n = nums.size();
vector<vector<int>> f(n, vector<int>(n));
auto dfs = [&](this auto&& dfs, int i, int j) -> int {
if (i > j) {
return 0;
}
if (f[i][j]) {
return f[i][j];
}
return f[i][j] = max(nums[i] - dfs(i + 1, j), nums[j] - dfs(i, j - 1));
};
return dfs(0, n - 1) >= 0;
}
};
Go
func predictTheWinner(nums []int) bool {
n := len(nums)
f := make([][]int, n)
for i := range f {
f[i] = make([]int, n)
}
var dfs func(i, j int) int
dfs = func(i, j int) int {
if i > j {
return 0
}
if f[i][j] == 0 {
f[i][j] = max(nums[i]-dfs(i+1, j), nums[j]-dfs(i, j-1))
}
return f[i][j]
}
return dfs(0, n-1) >= 0
}
TypeScript
function predictTheWinner(nums: number[]): boolean {
const n = nums.length;
const f: number[][] = Array.from({ length: n }, () => Array(n).fill(0));
const dfs = (i: number, j: number): number => {
if (i > j) {
return 0;
}
if (f[i][j] === 0) {
f[i][j] = Math.max(nums[i] - dfs(i + 1, j), nums[j] - dfs(i, j - 1));
}
return f[i][j];
};
return dfs(0, n - 1) >= 0;
}
Rust
impl Solution {
pub fn predict_the_winner(nums: Vec<i32>) -> bool {
let n = nums.len();
let mut f = vec![vec![0; n]; n];
Self::dfs(&nums, &mut f, 0, n - 1) >= 0
}
fn dfs(nums: &Vec<i32>, f: &mut Vec<Vec<i32>>, i: usize, j: usize) -> i32 {
if i == j {
return nums[i] as i32;
}
if f[i][j] != 0 {
return f[i][j];
}
f[i][j] = std::cmp::max(
nums[i] - Self::dfs(nums, f, i + 1, j),
nums[j] - Self::dfs(nums, f, i, j - 1)
);
f[i][j]
}
}
Solution 2: Dynamic Programming
We can also use dynamic programming. Define $f[i][j]$ to represent the maximum score difference the current player can achieve in the range $\textit{nums}[i..j]$. The final answer is $f[0][n - 1] \geq 0$.
Initially, $f[i][i] = \textit{nums}[i]$, because with only one number, the current player can only take that number, and the score difference is $\textit{nums}[i]$.
Consider $f[i][j]$ where $i < j$, there are two cases:
If the current player takes $\textit{nums}[i]$, the remaining numbers are $\textit{nums}[i + 1..j]$, and it is the other player's turn. So, $f[i][j] = \textit{nums}[i] - f[i + 1][j]$.
If the current player takes $\textit{nums}[j]$, the remaining numbers are $\textit{nums}[i..j - 1]$, and it is the other player's turn. So, $f[i][j] = \textit{nums}[j] - f[i][j - 1]$.
Therefore, the state transition equation is $f[i][j] = \max(\textit{nums}[i] - f[i + 1][j], \textit{nums}[j] - f[i][j - 1])$.
Finally, we only need to check if $f[0][n - 1] \geq 0$.
The time complexity is $O(n^2)$, and the space complexity is $O(n^2)$. Here, $n$ is the length of the array $\textit{nums}$.
Similar problem:
Python3
class Solution:
def predictTheWinner(self, nums: List[int]) -> bool:
n = len(nums)
f = [[0] * n for _ in range(n)]
for i, x in enumerate(nums):
f[i][i] = x
for i in range(n - 2, -1, -1):
for j in range(i + 1, n):
f[i][j] = max(nums[i] - f[i + 1][j], nums[j] - f[i][j - 1])
return f[0][n - 1] >= 0
Java
class Solution {
public boolean predictTheWinner(int[] nums) {
int n = nums.length;
int[][] f = new int[n][n];
for (int i = 0; i < n; ++i) {
f[i][i] = nums[i];
}
for (int i = n - 2; i >= 0; --i) {
for (int j = i + 1; j < n; ++j) {
f[i][j] = Math.max(nums[i] - f[i + 1][j], nums[j] - f[i][j - 1]);
}
}
return f[0][n - 1] >= 0;
}
}
C++
class Solution {
public:
bool predictTheWinner(vector<int>& nums) {
int n = nums.size();
int f[n][n];
memset(f, 0, sizeof(f));
for (int i = 0; i < n; ++i) {
f[i][i] = nums[i];
}
for (int i = n - 2; ~i; --i) {
for (int j = i + 1; j < n; ++j) {
f[i][j] = max(nums[i] - f[i + 1][j], nums[j] - f[i][j - 1]);
}
}
return f[0][n - 1] >= 0;
}
};
Go
func predictTheWinner(nums []int) bool {
n := len(nums)
f := make([][]int, n)
for i, x := range nums {
f[i] = make([]int, n)
f[i][i] = x
}
for i := n - 2; i >= 0; i-- {
for j := i + 1; j < n; j++ {
f[i][j] = max(nums[i]-f[i+1][j], nums[j]-f[i][j-1])
}
}
return f[0][n-1] >= 0
}
TypeScript
function predictTheWinner(nums: number[]): boolean {
const n = nums.length;
const f: number[][] = Array.from({ length: n }, () => Array(n).fill(0));
for (let i = 0; i < n; ++i) {
f[i][i] = nums[i];
}
for (let i = n - 2; i >= 0; --i) {
for (let j = i + 1; j < n; ++j) {
f[i][j] = Math.max(nums[i] - f[i + 1][j], nums[j] - f[i][j - 1]);
}
}
return f[0][n - 1] >= 0;
}
Rust
impl Solution {
pub fn predict_the_winner(nums: Vec<i32>) -> bool {
let n = nums.len();
let mut f = vec![vec![0; n]; n];
for i in 0..n {
f[i][i] = nums[i];
}
for i in (0..n - 1).rev() {
for j in i + 1..n {
f[i][j] = std::cmp::max(nums[i] - f[i + 1][j], nums[j] - f[i][j - 1]);
}
}
f[0][n - 1] >= 0
}
}