1745. Palindrome Partitioning IV
Description
Given a string s
, return true
if it is possible to split the string s
into three non-empty palindromic substrings. Otherwise, return false
.
A string is said to be palindrome if it the same string when reversed.
Example 1:
Input: s = "abcbdd" Output: true Explanation: "abcbdd" = "a" + "bcb" + "dd", and all three substrings are palindromes.
Example 2:
Input: s = "bcbddxy" Output: false Explanation: s cannot be split into 3 palindromes.
Constraints:
3 <= s.length <= 2000
s
consists only of lowercase English letters.
Solutions
Solution 1: Dynamic Programming
We define $f[i][j]$ to indicate whether the substring of $s$ from the $i$-th character to the $j$-th character is a palindrome, initially $f[i][j] = \textit{true}$.
Then we can calculate $f[i][j]$ using the following state transition equation:
$$ f[i][j] = \begin{cases} \textit{true}, & \text{if } s[i] = s[j] \text{ and } (i + 1 = j \text{ or } f[i + 1][j - 1]) \ \textit{false}, & \text{otherwise} \end{cases} $$
Since $f[i][j]$ depends on $f[i + 1][j - 1]$, we need to enumerate $i$ from large to small and $j$ from small to large, so that when calculating $f[i][j]$, $f[i + 1][j - 1]$ has already been calculated.
Next, we enumerate the right endpoint $i$ of the first substring and the right endpoint $j$ of the second substring. The left endpoint of the third substring can be enumerated in the range $[j + 1, n - 1]$, where $n$ is the length of the string $s$. If the first substring $s[0..i]$, the second substring $s[i+1..j]$, and the third substring $s[j+1..n-1]$ are all palindromes, then we have found a feasible partitioning scheme and return $\textit{true}$.
After enumerating all partitioning schemes, if no valid partitioning scheme is found, return $\textit{false}$.
Time complexity is $O(n^2)$, and space complexity is $O(n^2)$. Where $n$ is the length of the string $s$.
Python3
class Solution:
def checkPartitioning(self, s: str) -> bool:
n = len(s)
f = [[True] * n for _ in range(n)]
for i in range(n - 1, -1, -1):
for j in range(i + 1, n):
f[i][j] = s[i] == s[j] and (i + 1 == j or f[i + 1][j - 1])
for i in range(n - 2):
for j in range(i + 1, n - 1):
if f[0][i] and f[i + 1][j] and f[j + 1][-1]:
return True
return False
Java
class Solution {
public boolean checkPartitioning(String s) {
int n = s.length();
boolean[][] f = new boolean[n][n];
for (var g : f) {
Arrays.fill(g, true);
}
for (int i = n - 1; i >= 0; --i) {
for (int j = i + 1; j < n; ++j) {
f[i][j] = s.charAt(i) == s.charAt(j) && (i + 1 == j || f[i + 1][j - 1]);
}
}
for (int i = 0; i < n - 2; ++i) {
for (int j = i + 1; j < n - 1; ++j) {
if (f[0][i] && f[i + 1][j] && f[j + 1][n - 1]) {
return true;
}
}
}
return false;
}
}
C++
class Solution {
public:
bool checkPartitioning(string s) {
int n = s.size();
vector<vector<bool>> f(n, vector<bool>(n, true));
for (int i = n - 1; i >= 0; --i) {
for (int j = i + 1; j < n; ++j) {
f[i][j] = s[i] == s[j] && (i + 1 == j || f[i + 1][j - 1]);
}
}
for (int i = 0; i < n - 2; ++i) {
for (int j = i + 1; j < n - 1; ++j) {
if (f[0][i] && f[i + 1][j] && f[j + 1][n - 1]) {
return true;
}
}
}
return false;
}
};
Go
func checkPartitioning(s string) bool {
n := len(s)
f := make([][]bool, n)
for i := range f {
f[i] = make([]bool, n)
for j := range f[i] {
f[i][j] = true
}
}
for i := n - 1; i >= 0; i-- {
for j := i + 1; j < n; j++ {
f[i][j] = s[i] == s[j] && (i+1 == j || f[i+1][j-1])
}
}
for i := 0; i < n-2; i++ {
for j := i + 1; j < n-1; j++ {
if f[0][i] && f[i+1][j] && f[j+1][n-1] {
return true
}
}
}
return false
}
TypeScript
function checkPartitioning(s: string): boolean {
const n = s.length;
const f: boolean[][] = Array.from({ length: n }, () => Array(n).fill(true));
for (let i = n - 1; i >= 0; --i) {
for (let j = i + 1; j < n; ++j) {
f[i][j] = s[i] === s[j] && f[i + 1][j - 1];
}
}
for (let i = 0; i < n - 2; ++i) {
for (let j = i + 1; j < n - 1; ++j) {
if (f[0][i] && f[i + 1][j] && f[j + 1][n - 1]) {
return true;
}
}
}
return false;
}