3323. Minimize Connected Groups by Inserting Interval π ο
Descriptionο
You are given a 2D array intervals
, where intervals[i] = [starti, endi]
represents the start and the end of interval i
. You are also given an integer k
.
You must add exactly one new interval [startnew, endnew]
to the array such that:
- The length of the new interval,
endnew - startnew
, is at mostk
. - After adding, the number of connected groups in
intervals
is minimized.
A connected group of intervals is a maximal collection of intervals that, when considered together, cover a continuous range from the smallest point to the largest point with no gaps between them. Here are some examples:
- A group of intervals
[[1, 2], [2, 5], [3, 3]]
is connected because together they cover the range from 1 to 5 without any gaps. - However, a group of intervals
[[1, 2], [3, 4]]
is not connected because the segment(2, 3)
is not covered.
Return the minimum number of connected groups after adding exactly one new interval to the array.
Example 1:
Input: intervals = [[1,3],[5,6],[8,10]], k = 3
Output: 2
Explanation:
After adding the interval [3, 5]
, we have two connected groups: [[1, 3], [3, 5], [5, 6]]
and [[8, 10]]
.
Example 2:
Input: intervals = [[5,10],[1,1],[3,3]], k = 1
Output: 3
Explanation:
After adding the interval [1, 1]
, we have three connected groups: [[1, 1], [1, 1]]
, [[3, 3]]
, and [[5, 10]]
.
Constraints:
1 <= intervals.length <= 105
intervals[i] == [starti, endi]
1 <= starti <= endi <= 109
1 <= k <= 109
Solutionsο
Solution 1: Sorting + Binary Searchο
First, we sort the given set of intervals $\textit{intervals}$ by their left endpoints, then merge all overlapping intervals to obtain a new set of intervals $\textit{merged}$.
We can then set the initial answer to the length of $\textit{merged}$.
Next, we enumerate each interval $[_, e]$ in $\textit{merged}$. Using binary search, we find the first interval in $\textit{merged}$ whose left endpoint is greater than or equal to $e + k + 1$, and let its index be $j$. We can then update the answer as $\textit{ans} = \min(\textit{ans}, |\textit{merged}| - (j - i - 1))$.
Finally, we return the answer $\textit{ans}$.
The time complexity is $O(n \times \log n)$, and the space complexity is $O(n)$. Here, $n$ is the number of intervals.
Python3ο
class Solution:
def minConnectedGroups(self, intervals: List[List[int]], k: int) -> int:
intervals.sort()
merged = [intervals[0]]
for s, e in intervals[1:]:
if merged[-1][1] < s:
merged.append([s, e])
else:
merged[-1][1] = max(merged[-1][1], e)
ans = len(merged)
for i, (_, e) in enumerate(merged):
j = bisect_left(merged, [e + k + 1, 0])
ans = min(ans, len(merged) - (j - i - 1))
return ans
Javaο
class Solution {
public int minConnectedGroups(int[][] intervals, int k) {
Arrays.sort(intervals, (a, b) -> Integer.compare(a[0], b[0]));
List<int[]> merged = new ArrayList<>();
merged.add(intervals[0]);
for (int i = 1; i < intervals.length; i++) {
int[] interval = intervals[i];
int[] last = merged.get(merged.size() - 1);
if (last[1] < interval[0]) {
merged.add(interval);
} else {
last[1] = Math.max(last[1], interval[1]);
}
}
int ans = merged.size();
for (int i = 0; i < merged.size(); i++) {
int[] interval = merged.get(i);
int j = binarySearch(merged, interval[1] + k + 1);
ans = Math.min(ans, merged.size() - (j - i - 1));
}
return ans;
}
private int binarySearch(List<int[]> nums, int x) {
int l = 0, r = nums.size();
while (l < r) {
int mid = (l + r) >> 1;
if (nums.get(mid)[0] >= x) {
r = mid;
} else {
l = mid + 1;
}
}
return l;
}
}
C++ο
class Solution {
public:
int minConnectedGroups(vector<vector<int>>& intervals, int k) {
sort(intervals.begin(), intervals.end());
vector<vector<int>> merged;
for (const auto& interval : intervals) {
int s = interval[0], e = interval[1];
if (merged.empty() || merged.back()[1] < s) {
merged.emplace_back(interval);
} else {
merged.back()[1] = max(merged.back()[1], e);
}
}
int ans = merged.size();
for (int i = 0; i < merged.size(); ++i) {
auto& interval = merged[i];
int j = lower_bound(merged.begin(), merged.end(), vector<int>{interval[1] + k + 1, 0}) - merged.begin();
ans = min(ans, (int) merged.size() - (j - i - 1));
}
return ans;
}
};
Goο
func minConnectedGroups(intervals [][]int, k int) int {
sort.Slice(intervals, func(i, j int) bool { return intervals[i][0] < intervals[j][0] })
merged := [][]int{}
for _, interval := range intervals {
s, e := interval[0], interval[1]
if len(merged) == 0 || merged[len(merged)-1][1] < s {
merged = append(merged, interval)
} else {
merged[len(merged)-1][1] = max(merged[len(merged)-1][1], e)
}
}
ans := len(merged)
for i, interval := range merged {
j := sort.Search(len(merged), func(j int) bool { return merged[j][0] >= interval[1]+k+1 })
ans = min(ans, len(merged)-(j-i-1))
}
return ans
}
TypeScriptο
function minConnectedGroups(intervals: number[][], k: number): number {
intervals.sort((a, b) => a[0] - b[0]);
const merged: number[][] = [];
for (const interval of intervals) {
const [s, e] = interval;
if (merged.length === 0 || merged.at(-1)![1] < s) {
merged.push(interval);
} else {
merged.at(-1)![1] = Math.max(merged.at(-1)![1], e);
}
}
const search = (x: number): number => {
let [l, r] = [0, merged.length];
while (l < r) {
const mid = (l + r) >> 1;
if (merged[mid][0] >= x) {
r = mid;
} else {
l = mid + 1;
}
}
return l;
};
let ans = merged.length;
for (let i = 0; i < merged.length; ++i) {
const j = search(merged[i][1] + k + 1);
ans = Math.min(ans, merged.length - (j - i - 1));
}
return ans;
}