3180. Maximum Total Reward Using Operations I
Description
You are given an integer array rewardValues
of length n
, representing the values of rewards.
Initially, your total reward x
is 0, and all indices are unmarked. You are allowed to perform the following operation any number of times:
- Choose an unmarked index
i
from the range[0, n - 1]
. - If
rewardValues[i]
is greater than your current total rewardx
, then addrewardValues[i]
tox
(i.e.,x = x + rewardValues[i]
), and mark the indexi
.
Return an integer denoting the maximum total reward you can collect by performing the operations optimally.
Example 1:
Input: rewardValues = [1,1,3,3]
Output: 4
Explanation:
During the operations, we can choose to mark the indices 0 and 2 in order, and the total reward will be 4, which is the maximum.
Example 2:
Input: rewardValues = [1,6,4,3,2]
Output: 11
Explanation:
Mark the indices 0, 2, and 1 in order. The total reward will then be 11, which is the maximum.
Constraints:
1 <= rewardValues.length <= 2000
1 <= rewardValues[i] <= 2000
Solutions
Solution 1: Sorting + Memoization + Binary Search
We can sort the rewardValues
array and then use memoization to solve for the maximum total reward.
We define a function $\textit{dfs}(x)$, representing the maximum total reward that can be obtained when the current total reward is $x$. Thus, the answer is $\textit{dfs}(0)$.
The execution process of the function $\textit{dfs}(x)$ is as follows:
Perform a binary search in the
rewardValues
array for the index $i$ of the first element greater than $x$;Iterate over the elements in the
rewardValues
array starting from index $i$, and for each element $v$, calculate the maximum value of $v + \textit{dfs}(x + v)$.Return the result.
To avoid repeated calculations, we use a memoization array f
to record the results that have already been computed.
The time complexity is $O(n \times (\log n + M))$, and the space complexity is $O(M)$. Where $n$ is the length of the rewardValues
array, and $M$ is twice the maximum value in the rewardValues
array.
Python3
class Solution:
def maxTotalReward(self, rewardValues: List[int]) -> int:
@cache
def dfs(x: int) -> int:
i = bisect_right(rewardValues, x)
ans = 0
for v in rewardValues[i:]:
ans = max(ans, v + dfs(x + v))
return ans
rewardValues.sort()
return dfs(0)
Java
class Solution {
private int[] nums;
private Integer[] f;
public int maxTotalReward(int[] rewardValues) {
nums = rewardValues;
Arrays.sort(nums);
int n = nums.length;
f = new Integer[nums[n - 1] << 1];
return dfs(0);
}
private int dfs(int x) {
if (f[x] != null) {
return f[x];
}
int i = Arrays.binarySearch(nums, x + 1);
i = i < 0 ? -i - 1 : i;
int ans = 0;
for (; i < nums.length; ++i) {
ans = Math.max(ans, nums[i] + dfs(x + nums[i]));
}
return f[x] = ans;
}
}
C++
class Solution {
public:
int maxTotalReward(vector<int>& rewardValues) {
sort(rewardValues.begin(), rewardValues.end());
int n = rewardValues.size();
int f[rewardValues.back() << 1];
memset(f, -1, sizeof(f));
function<int(int)> dfs = [&](int x) {
if (f[x] != -1) {
return f[x];
}
auto it = upper_bound(rewardValues.begin(), rewardValues.end(), x);
int ans = 0;
for (; it != rewardValues.end(); ++it) {
ans = max(ans, rewardValues[it - rewardValues.begin()] + dfs(x + *it));
}
return f[x] = ans;
};
return dfs(0);
}
};
Go
func maxTotalReward(rewardValues []int) int {
sort.Ints(rewardValues)
n := len(rewardValues)
f := make([]int, rewardValues[n-1]<<1)
for i := range f {
f[i] = -1
}
var dfs func(int) int
dfs = func(x int) int {
if f[x] != -1 {
return f[x]
}
i := sort.SearchInts(rewardValues, x+1)
f[x] = 0
for _, v := range rewardValues[i:] {
f[x] = max(f[x], v+dfs(x+v))
}
return f[x]
}
return dfs(0)
}
TypeScript
function maxTotalReward(rewardValues: number[]): number {
rewardValues.sort((a, b) => a - b);
const search = (x: number): number => {
let [l, r] = [0, rewardValues.length];
while (l < r) {
const mid = (l + r) >> 1;
if (rewardValues[mid] > x) {
r = mid;
} else {
l = mid + 1;
}
}
return l;
};
const f: number[] = Array(rewardValues.at(-1)! << 1).fill(-1);
const dfs = (x: number): number => {
if (f[x] !== -1) {
return f[x];
}
let ans = 0;
for (let i = search(x); i < rewardValues.length; ++i) {
ans = Math.max(ans, rewardValues[i] + dfs(x + rewardValues[i]));
}
return (f[x] = ans);
};
return dfs(0);
}
Solution 2: Dynamic Programming
We define $f[i][j]$ as whether it is possible to obtain a total reward of $j$ using the first $i$ reward values. Initially, $f[0][0] = \textit{True}$, and all other values are $\textit{False}$.
We consider the $i$-th reward value $v$. If we do not choose it, then $f[i][j] = f[i - 1][j]$. If we choose it, then $f[i][j] = f[i - 1][j - v]$, where $0 \leq j - v < v$. Thus, the state transition equation is:
$$ f[i][j] = f[i - 1][j] \vee f[i - 1][j - v] $$
The final answer is $\max{j \mid f[n][j] = \textit{True}}$.
Since $f[i][j]$ only depends on $f[i - 1][j]$ and $f[i - 1][j - v]$, we can optimize away the first dimension and use only a one-dimensional array for state transitions.
The time complexity is $O(n \times M)$, and the space complexity is $O(M)$. Where $n$ is the length of the rewardValues
array, and $M$ is twice the maximum value in the rewardValues
array.
Python3
class Solution:
def maxTotalReward(self, rewardValues: List[int]) -> int:
nums = sorted(set(rewardValues))
m = nums[-1] << 1
f = [False] * m
f[0] = True
for v in nums:
for j in range(m):
if 0 <= j - v < v:
f[j] |= f[j - v]
ans = m - 1
while not f[ans]:
ans -= 1
return ans
Java
class Solution {
public int maxTotalReward(int[] rewardValues) {
int[] nums = Arrays.stream(rewardValues).distinct().sorted().toArray();
int n = nums.length;
int m = nums[n - 1] << 1;
boolean[] f = new boolean[m];
f[0] = true;
for (int v : nums) {
for (int j = 0; j < m; ++j) {
if (0 <= j - v && j - v < v) {
f[j] |= f[j - v];
}
}
}
int ans = m - 1;
while (!f[ans]) {
--ans;
}
return ans;
}
}
C++
class Solution {
public:
int maxTotalReward(vector<int>& rewardValues) {
sort(rewardValues.begin(), rewardValues.end());
rewardValues.erase(unique(rewardValues.begin(), rewardValues.end()), rewardValues.end());
int n = rewardValues.size();
int m = rewardValues.back() << 1;
bool f[m];
memset(f, false, sizeof(f));
f[0] = true;
for (int v : rewardValues) {
for (int j = 1; j < m; ++j) {
if (0 <= j - v && j - v < v) {
f[j] = f[j] || f[j - v];
}
}
}
int ans = m - 1;
while (!f[ans]) {
--ans;
}
return ans;
}
};
Go
func maxTotalReward(rewardValues []int) int {
slices.Sort(rewardValues)
nums := slices.Compact(rewardValues)
n := len(nums)
m := nums[n-1] << 1
f := make([]bool, m)
f[0] = true
for _, v := range nums {
for j := 1; j < m; j++ {
if 0 <= j-v && j-v < v {
f[j] = f[j] || f[j-v]
}
}
}
ans := m - 1
for !f[ans] {
ans--
}
return ans
}
TypeScript
function maxTotalReward(rewardValues: number[]): number {
const nums = Array.from(new Set(rewardValues)).sort((a, b) => a - b);
const n = nums.length;
const m = nums[n - 1] << 1;
const f: boolean[] = Array(m).fill(false);
f[0] = true;
for (const v of nums) {
for (let j = 1; j < m; ++j) {
if (0 <= j - v && j - v < v) {
f[j] = f[j] || f[j - v];
}
}
}
let ans = m - 1;
while (!f[ans]) {
--ans;
}
return ans;
}
Solution 3: Dynamic Programming + Bit Manipulation
We can optimize Solution 2 by defining a binary number $f$ to save the current state, where the $i$-th bit of $f$ being $1$ indicates that a total reward of $i$ is reachable.
Observing the state transition equation from Solution 2, $f[j] = f[j] \vee f[j - v]$, this is equivalent to taking the lower $v$ bits of $f$, shifting them left by $v$ bits, and then performing an OR operation with the original $f$.
Thus, the answer is the position of the highest bit in $f$.
The time complexity is $O(n \times M / w)$, and the space complexity is $O(n + M / w)$. Where $n$ is the length of the rewardValues
array, $M$ is twice the maximum value in the rewardValues
array, and the integer $w = 32$ or $64$.
Python3
class Solution:
def maxTotalReward(self, rewardValues: List[int]) -> int:
nums = sorted(set(rewardValues))
f = 1
for v in nums:
f |= (f & ((1 << v) - 1)) << v
return f.bit_length() - 1
Java
import java.math.BigInteger;
class Solution {
public int maxTotalReward(int[] rewardValues) {
int[] nums = Arrays.stream(rewardValues).distinct().sorted().toArray();
BigInteger f = BigInteger.ONE;
for (int v : nums) {
BigInteger mask = BigInteger.ONE.shiftLeft(v).subtract(BigInteger.ONE);
BigInteger shifted = f.and(mask).shiftLeft(v);
f = f.or(shifted);
}
return f.bitLength() - 1;
}
}
C++
class Solution {
public:
int maxTotalReward(vector<int>& rewardValues) {
sort(rewardValues.begin(), rewardValues.end());
rewardValues.erase(unique(rewardValues.begin(), rewardValues.end()), rewardValues.end());
bitset<100000> f{1};
for (int v : rewardValues) {
int shift = f.size() - v;
f |= f << shift >> (shift - v);
}
for (int i = rewardValues.back() * 2 - 1;; i--) {
if (f.test(i)) {
return i;
}
}
}
};
Go
func maxTotalReward(rewardValues []int) int {
slices.Sort(rewardValues)
rewardValues = slices.Compact(rewardValues)
one := big.NewInt(1)
f := big.NewInt(1)
p := new(big.Int)
for _, v := range rewardValues {
mask := p.Sub(p.Lsh(one, uint(v)), one)
f.Or(f, p.Lsh(p.And(f, mask), uint(v)))
}
return f.BitLen() - 1
}
TypeScript
function maxTotalReward(rewardValues: number[]): number {
rewardValues.sort((a, b) => a - b);
rewardValues = [...new Set(rewardValues)];
let f = 1n;
for (const x of rewardValues) {
const mask = (1n << BigInt(x)) - 1n;
f = f | ((f & mask) << BigInt(x));
}
return f.toString(2).length - 1;
}