1128. Number of Equivalent Domino Pairs
Description
Given a list of dominoes
, dominoes[i] = [a, b]
is equivalent to dominoes[j] = [c, d]
if and only if either (a == c
and b == d
), or (a == d
and b == c
) - that is, one domino can be rotated to be equal to another domino.
Return the number of pairs (i, j)
for which 0 <= i < j < dominoes.length
, and dominoes[i]
is equivalent to dominoes[j]
.
Example 1:
Input: dominoes = [[1,2],[2,1],[3,4],[5,6]] Output: 1
Example 2:
Input: dominoes = [[1,2],[1,2],[1,1],[1,2],[2,2]] Output: 3
Constraints:
1 <= dominoes.length <= 4 * 104
dominoes[i].length == 2
1 <= dominoes[i][j] <= 9
Solutions
Solution 1: Counting
We can concatenate the two numbers of each domino in order of size to form a two-digit number, so that equivalent dominoes can be concatenated into the same two-digit number. For example, both [1, 2]
and [2, 1]
are concatenated into the two-digit number 12
, and both [3, 4]
and [4, 3]
are concatenated into the two-digit number 34
.
Then we traverse all the dominoes, using an array $cnt$ of length $100$ to record the number of occurrences of each two-digit number. For each domino, the two-digit number we concatenate is $x$, then the answer will increase by $cnt[x]$, and then we add $1$ to the value of $cnt[x]$. Continue to traverse the next domino, and we can count the number of all equivalent domino pairs.
The time complexity is $O(n)$, and the space complexity is $O(C)$. Here, $n$ is the number of dominoes, and $C$ is the maximum number of two-digit numbers concatenated in the dominoes, which is $100$.
Python3
class Solution:
def numEquivDominoPairs(self, dominoes: List[List[int]]) -> int:
cnt = Counter()
ans = 0
for a, b in dominoes:
x = a * 10 + b if a < b else b * 10 + a
ans += cnt[x]
cnt[x] += 1
return ans
Java
class Solution {
public int numEquivDominoPairs(int[][] dominoes) {
int[] cnt = new int[100];
int ans = 0;
for (var e : dominoes) {
int x = e[0] < e[1] ? e[0] * 10 + e[1] : e[1] * 10 + e[0];
ans += cnt[x]++;
}
return ans;
}
}
C++
class Solution {
public:
int numEquivDominoPairs(vector<vector<int>>& dominoes) {
int cnt[100]{};
int ans = 0;
for (auto& e : dominoes) {
int x = e[0] < e[1] ? e[0] * 10 + e[1] : e[1] * 10 + e[0];
ans += cnt[x]++;
}
return ans;
}
};
Go
func numEquivDominoPairs(dominoes [][]int) (ans int) {
cnt := [100]int{}
for _, e := range dominoes {
x := e[0]*10 + e[1]
if e[0] > e[1] {
x = e[1]*10 + e[0]
}
ans += cnt[x]
cnt[x]++
}
return
}
TypeScript
function numEquivDominoPairs(dominoes: number[][]): number {
const cnt: number[] = new Array(100).fill(0);
let ans = 0;
for (const [a, b] of dominoes) {
const key = a < b ? a * 10 + b : b * 10 + a;
ans += cnt[key];
cnt[key]++;
}
return ans;
}
Rust
impl Solution {
pub fn num_equiv_domino_pairs(dominoes: Vec<Vec<i32>>) -> i32 {
let mut cnt = [0i32; 100];
let mut ans = 0;
for d in dominoes {
let a = d[0] as usize;
let b = d[1] as usize;
let key = if a < b { a * 10 + b } else { b * 10 + a };
ans += cnt[key];
cnt[key] += 1;
}
ans
}
}