3462. Maximum Sum With at Most K Elements
Description
You are given a 2D integer matrix grid
of size n x m
, an integer array limits
of length n
, and an integer k
. The task is to find the maximum sum of at most k
elements from the matrix grid
such that:
-
The number of elements taken from the
ith
row ofgrid
does not exceedlimits[i]
.
Return the maximum sum.
Example 1:
Input: grid = [[1,2],[3,4]], limits = [1,2], k = 2
Output: 7
Explanation:
- From the second row, we can take at most 2 elements. The elements taken are 4 and 3.
- The maximum possible sum of at most 2 selected elements is
4 + 3 = 7
.
Example 2:
Input: grid = [[5,3,7],[8,2,6]], limits = [2,2], k = 3
Output: 21
Explanation:
- From the first row, we can take at most 2 elements. The element taken is 7.
- From the second row, we can take at most 2 elements. The elements taken are 8 and 6.
- The maximum possible sum of at most 3 selected elements is
7 + 8 + 6 = 21
.
Constraints:
n == grid.length == limits.length
m == grid[i].length
1 <= n, m <= 500
0 <= grid[i][j] <= 105
0 <= limits[i] <= m
0 <= k <= min(n * m, sum(limits))
Solutions
Solution 1: Greedy + Priority Queue (Min-Heap)
We can use a priority queue (min-heap) $\textit{pq}$ to maintain the largest $k$ elements.
Traverse each row, sort the elements in each row, and then take the largest $\textit{limit}$ elements from each row and add them to $\textit{pq}$. If the size of $\textit{pq}$ exceeds $k$, pop the top element of the heap.
Finally, sum the elements in $\textit{pq}$.
The time complexity is $O(n \times m \times (\log m + \log k))$, and the space complexity is $O(k)$. Here, $n$ and $m$ are the number of rows and columns of the matrix $\textit{grid}$, respectively.
Python3
class Solution:
def maxSum(self, grid: List[List[int]], limits: List[int], k: int) -> int:
pq = []
for nums, limit in zip(grid, limits):
nums.sort()
for _ in range(limit):
heappush(pq, nums.pop())
if len(pq) > k:
heappop(pq)
return sum(pq)
Java
class Solution {
public long maxSum(int[][] grid, int[] limits, int k) {
PriorityQueue<Integer> pq = new PriorityQueue<>();
int n = grid.length;
for (int i = 0; i < n; ++i) {
int[] nums = grid[i];
int limit = limits[i];
Arrays.sort(nums);
for (int j = 0; j < limit; ++j) {
pq.offer(nums[nums.length - j - 1]);
if (pq.size() > k) {
pq.poll();
}
}
}
long ans = 0;
for (int x : pq) {
ans += x;
}
return ans;
}
}
C++
class Solution {
public:
long long maxSum(vector<vector<int>>& grid, vector<int>& limits, int k) {
priority_queue<int, vector<int>, greater<int>> pq;
int n = grid.size();
for (int i = 0; i < n; ++i) {
vector<int> nums = grid[i];
int limit = limits[i];
ranges::sort(nums);
for (int j = 0; j < limit; ++j) {
pq.push(nums[nums.size() - j - 1]);
if (pq.size() > k) {
pq.pop();
}
}
}
long long ans = 0;
while (!pq.empty()) {
ans += pq.top();
pq.pop();
}
return ans;
}
};
Go
type MinHeap []int
func (h MinHeap) Len() int { return len(h) }
func (h MinHeap) Less(i, j int) bool { return h[i] < h[j] }
func (h MinHeap) Swap(i, j int) { h[i], h[j] = h[j], h[i] }
func (h *MinHeap) Push(x interface{}) {
*h = append(*h, x.(int))
}
func (h *MinHeap) Pop() interface{} {
old := *h
n := len(old)
x := old[n-1]
*h = old[0 : n-1]
return x
}
func maxSum(grid [][]int, limits []int, k int) int64 {
pq := &MinHeap{}
heap.Init(pq)
n := len(grid)
for i := 0; i < n; i++ {
nums := make([]int, len(grid[i]))
copy(nums, grid[i])
limit := limits[i]
sort.Ints(nums)
for j := 0; j < limit; j++ {
heap.Push(pq, nums[len(nums)-j-1])
if pq.Len() > k {
heap.Pop(pq)
}
}
}
var ans int64 = 0
for pq.Len() > 0 {
ans += int64(heap.Pop(pq).(int))
}
return ans
}
TypeScript
function maxSum(grid: number[][], limits: number[], k: number): number {
const pq = new MinPriorityQueue();
const n = grid.length;
for (let i = 0; i < n; i++) {
const nums = grid[i];
const limit = limits[i];
nums.sort((a, b) => a - b);
for (let j = 0; j < limit; j++) {
pq.enqueue(nums[nums.length - j - 1]);
if (pq.size() > k) {
pq.dequeue();
}
}
}
let ans = 0;
while (!pq.isEmpty()) {
ans += pq.dequeue() as number;
}
return ans;
}