1206. Design Skiplist
Description
Design a Skiplist without using any built-in libraries.
A skiplist is a data structure that takes O(log(n))
time to add, erase and search. Comparing with treap and red-black tree which has the same function and performance, the code length of Skiplist can be comparatively short and the idea behind Skiplists is just simple linked lists.
For example, we have a Skiplist containing [30,40,50,60,70,90]
and we want to add 80
and 45
into it. The Skiplist works this way:
Artyom Kalinin [CC BY-SA 3.0], via Wikimedia Commons
You can see there are many layers in the Skiplist. Each layer is a sorted linked list. With the help of the top layers, add, erase and search can be faster than O(n)
. It can be proven that the average time complexity for each operation is O(log(n))
and space complexity is O(n)
.
See more about Skiplist: https://en.wikipedia.org/wiki/Skip_list
Implement the Skiplist
class:
Skiplist()
Initializes the object of the skiplist.bool search(int target)
Returnstrue
if the integertarget
exists in the Skiplist orfalse
otherwise.void add(int num)
Inserts the valuenum
into the SkipList.bool erase(int num)
Removes the valuenum
from the Skiplist and returnstrue
. Ifnum
does not exist in the Skiplist, do nothing and returnfalse
. If there exist multiplenum
values, removing any one of them is fine.
Note that duplicates may exist in the Skiplist, your code needs to handle this situation.
Example 1:
Input ["Skiplist", "add", "add", "add", "search", "add", "search", "erase", "erase", "search"] [[], [1], [2], [3], [0], [4], [1], [0], [1], [1]] Output [null, null, null, null, false, null, true, false, true, false] Explanation Skiplist skiplist = new Skiplist(); skiplist.add(1); skiplist.add(2); skiplist.add(3); skiplist.search(0); // return False skiplist.add(4); skiplist.search(1); // return True skiplist.erase(0); // return False, 0 is not in skiplist. skiplist.erase(1); // return True skiplist.search(1); // return False, 1 has already been erased.
Constraints:
0 <= num, target <= 2 * 104
- At most
5 * 104
calls will be made tosearch
,add
, anderase
.
Solutions
Solution 1: Data Structure
The core idea of a skip list is to use multiple "levels" to store data, with each level acting as an index. Data starts from the bottom level linked list and gradually rises to higher levels, eventually forming a multi-level linked list structure. Each level's nodes only contain part of the data, allowing for jumps to reduce search time.
In this problem, we use a $\textit{Node}$ class to represent the nodes of the skip list. Each node contains a $\textit{val}$ field and a $\textit{next}$ array. The length of the array is $\textit{level}$, indicating the next node at each level. We use a $\textit{Skiplist}$ class to implement the skip list operations.
The skip list contains a head node $\textit{head}$ and the current maximum level $\textit{level}$. The head node's value is set to $-1$ to mark the starting position of the list. We use a dynamic array $\textit{next}$ to store pointers to successor nodes.
For the $\textit{search}$ operation, we start from the highest level of the skip list and traverse downwards until we find the target node or determine that the target node does not exist. At each level, we use the $\textit{find_closest}$ method to jump to the node closest to the target.
For the $\textit{add}$ operation, we first randomly decide the level of the new node. Then, starting from the highest level, we find the node closest to the new value at each level and insert the new node at the appropriate position. If the level of the inserted node is greater than the current maximum level of the skip list, we need to update the level of the skip list.
For the $\textit{erase}$ operation, similar to the search operation, we traverse each level of the skip list to find and delete the target node. When deleting a node, we need to update the $\textit{next}$ pointers at each level. If the highest level of the skip list has no nodes, we need to decrease the level of the skip list.
Additionally, we define a $\textit{random_level}$ method to randomly decide the level of the new node. This method generates a random number between $[1, \textit{max_level}]$ until the generated random number is greater than or equal to $\textit{p}$. We also have a $\textit{find_closest}$ method to find the node closest to the target value at each level.
The time complexity of the above operations is $O(\log n)$, where $n$ is the number of nodes in the skip list. The space complexity is $O(n)$.
Python3
class Node:
__slots__ = ['val', 'next']
def __init__(self, val: int, level: int):
self.val = val
self.next = [None] * level
class Skiplist:
max_level = 32
p = 0.25
def __init__(self):
self.head = Node(-1, self.max_level)
self.level = 0
def search(self, target: int) -> bool:
curr = self.head
for i in range(self.level - 1, -1, -1):
curr = self.find_closest(curr, i, target)
if curr.next[i] and curr.next[i].val == target:
return True
return False
def add(self, num: int) -> None:
curr = self.head
level = self.random_level()
node = Node(num, level)
self.level = max(self.level, level)
for i in range(self.level - 1, -1, -1):
curr = self.find_closest(curr, i, num)
if i < level:
node.next[i] = curr.next[i]
curr.next[i] = node
def erase(self, num: int) -> bool:
curr = self.head
ok = False
for i in range(self.level - 1, -1, -1):
curr = self.find_closest(curr, i, num)
if curr.next[i] and curr.next[i].val == num:
curr.next[i] = curr.next[i].next[i]
ok = True
while self.level > 1 and self.head.next[self.level - 1] is None:
self.level -= 1
return ok
def find_closest(self, curr: Node, level: int, target: int) -> Node:
while curr.next[level] and curr.next[level].val < target:
curr = curr.next[level]
return curr
def random_level(self) -> int:
level = 1
while level < self.max_level and random.random() < self.p:
level += 1
return level
# Your Skiplist object will be instantiated and called as such:
# obj = Skiplist()
# param_1 = obj.search(target)
# obj.add(num)
# param_3 = obj.erase(num)
Java
class Skiplist {
private static final int MAX_LEVEL = 32;
private static final double P = 0.25;
private static final Random RANDOM = new Random();
private final Node head = new Node(-1, MAX_LEVEL);
private int level = 0;
public Skiplist() {
}
public boolean search(int target) {
Node curr = head;
for (int i = level - 1; i >= 0; --i) {
curr = findClosest(curr, i, target);
if (curr.next[i] != null && curr.next[i].val == target) {
return true;
}
}
return false;
}
public void add(int num) {
Node curr = head;
int lv = randomLevel();
Node node = new Node(num, lv);
level = Math.max(level, lv);
for (int i = level - 1; i >= 0; --i) {
curr = findClosest(curr, i, num);
if (i < lv) {
node.next[i] = curr.next[i];
curr.next[i] = node;
}
}
}
public boolean erase(int num) {
Node curr = head;
boolean ok = false;
for (int i = level - 1; i >= 0; --i) {
curr = findClosest(curr, i, num);
if (curr.next[i] != null && curr.next[i].val == num) {
curr.next[i] = curr.next[i].next[i];
ok = true;
}
}
while (level > 1 && head.next[level - 1] == null) {
--level;
}
return ok;
}
private Node findClosest(Node curr, int level, int target) {
while (curr.next[level] != null && curr.next[level].val < target) {
curr = curr.next[level];
}
return curr;
}
private static int randomLevel() {
int level = 1;
while (level < MAX_LEVEL && RANDOM.nextDouble() < P) {
++level;
}
return level;
}
static class Node {
int val;
Node[] next;
Node(int val, int level) {
this.val = val;
next = new Node[level];
}
}
}
/**
* Your Skiplist object will be instantiated and called as such:
* Skiplist obj = new Skiplist();
* boolean param_1 = obj.search(target);
* obj.add(num);
* boolean param_3 = obj.erase(num);
*/
C++
struct Node {
int val;
vector<Node*> next;
Node(int v, int level)
: val(v)
, next(level, nullptr) {}
};
class Skiplist {
public:
const int p = RAND_MAX / 4;
const int maxLevel = 32;
Node* head;
int level;
Skiplist() {
head = new Node(-1, maxLevel);
level = 0;
}
bool search(int target) {
Node* curr = head;
for (int i = level - 1; ~i; --i) {
curr = findClosest(curr, i, target);
if (curr->next[i] && curr->next[i]->val == target) return true;
}
return false;
}
void add(int num) {
Node* curr = head;
int lv = randomLevel();
Node* node = new Node(num, lv);
level = max(level, lv);
for (int i = level - 1; ~i; --i) {
curr = findClosest(curr, i, num);
if (i < lv) {
node->next[i] = curr->next[i];
curr->next[i] = node;
}
}
}
bool erase(int num) {
Node* curr = head;
bool ok = false;
for (int i = level - 1; ~i; --i) {
curr = findClosest(curr, i, num);
if (curr->next[i] && curr->next[i]->val == num) {
curr->next[i] = curr->next[i]->next[i];
ok = true;
}
}
while (level > 1 && !head->next[level - 1]) --level;
return ok;
}
Node* findClosest(Node* curr, int level, int target) {
while (curr->next[level] && curr->next[level]->val < target) curr = curr->next[level];
return curr;
}
int randomLevel() {
int lv = 1;
while (lv < maxLevel && rand() < p) ++lv;
return lv;
}
};
/**
* Your Skiplist object will be instantiated and called as such:
* Skiplist* obj = new Skiplist();
* bool param_1 = obj->search(target);
* obj->add(num);
* bool param_3 = obj->erase(num);
*/
Go
func init() { rand.Seed(time.Now().UnixNano()) }
const (
maxLevel = 16
p = 0.5
)
type node struct {
val int
next []*node
}
func newNode(val, level int) *node {
return &node{
val: val,
next: make([]*node, level),
}
}
type Skiplist struct {
head *node
level int
}
func Constructor() Skiplist {
return Skiplist{
head: newNode(-1, maxLevel),
level: 1,
}
}
func (this *Skiplist) Search(target int) bool {
p := this.head
for i := this.level - 1; i >= 0; i-- {
p = findClosest(p, i, target)
if p.next[i] != nil && p.next[i].val == target {
return true
}
}
return false
}
func (this *Skiplist) Add(num int) {
level := randomLevel()
if level > this.level {
this.level = level
}
node := newNode(num, level)
p := this.head
for i := this.level - 1; i >= 0; i-- {
p = findClosest(p, i, num)
if i < level {
node.next[i] = p.next[i]
p.next[i] = node
}
}
}
func (this *Skiplist) Erase(num int) bool {
ok := false
p := this.head
for i := this.level - 1; i >= 0; i-- {
p = findClosest(p, i, num)
if p.next[i] != nil && p.next[i].val == num {
p.next[i] = p.next[i].next[i]
ok = true
}
}
for this.level > 1 && this.head.next[this.level-1] == nil {
this.level--
}
return ok
}
func findClosest(p *node, level, target int) *node {
for p.next[level] != nil && p.next[level].val < target {
p = p.next[level]
}
return p
}
func randomLevel() int {
level := 1
for level < maxLevel && rand.Float64() < p {
level++
}
return level
}
/**
* Your Skiplist object will be instantiated and called as such:
* obj := Constructor();
* param_1 := obj.Search(target);
* obj.Add(num);
* param_3 := obj.Erase(num);
*/
TypeScript
class Node {
val: number;
next: (Node | null)[];
constructor(val: number, level: number) {
this.val = val;
this.next = Array(level).fill(null);
}
}
class Skiplist {
private static maxLevel: number = 32;
private static p: number = 0.25;
private head: Node;
private level: number;
constructor() {
this.head = new Node(-1, Skiplist.maxLevel);
this.level = 0;
}
search(target: number): boolean {
let curr = this.head;
for (let i = this.level - 1; i >= 0; i--) {
curr = this.findClosest(curr, i, target);
if (curr.next[i] && curr.next[i]!.val === target) {
return true;
}
}
return false;
}
add(num: number): void {
let curr = this.head;
const level = this.randomLevel();
const node = new Node(num, level);
this.level = Math.max(this.level, level);
for (let i = this.level - 1; i >= 0; i--) {
curr = this.findClosest(curr, i, num);
if (i < level) {
node.next[i] = curr.next[i];
curr.next[i] = node;
}
}
}
erase(num: number): boolean {
let curr = this.head;
let ok = false;
for (let i = this.level - 1; i >= 0; i--) {
curr = this.findClosest(curr, i, num);
if (curr.next[i] && curr.next[i]!.val === num) {
curr.next[i] = curr.next[i]!.next[i];
ok = true;
}
}
while (this.level > 1 && this.head.next[this.level - 1] === null) {
this.level--;
}
return ok;
}
private findClosest(curr: Node, level: number, target: number): Node {
while (curr.next[level] && curr.next[level]!.val < target) {
curr = curr.next[level]!;
}
return curr;
}
private randomLevel(): number {
let level = 1;
while (level < Skiplist.maxLevel && Math.random() < Skiplist.p) {
level++;
}
return level;
}
}
/**
* Your Skiplist object will be instantiated and called as such:
* var obj = new Skiplist()
* var param_1 = obj.search(target)
* obj.add(num)
* var param_3 = obj.erase(num)
*/