3418. Maximum Amount of Money Robot Can Earn

中文文档

Description

You are given an m x n grid. A robot starts at the top-left corner of the grid (0, 0) and wants to reach the bottom-right corner (m - 1, n - 1). The robot can move either right or down at any point in time.

The grid contains a value coins[i][j] in each cell:

  • If coins[i][j] >= 0, the robot gains that many coins.
  • If coins[i][j] < 0, the robot encounters a robber, and the robber steals the absolute value of coins[i][j] coins.

The robot has a special ability to neutralize robbers in at most 2 cells on its path, preventing them from stealing coins in those cells.

Note: The robot's total coins can be negative.

Return the maximum profit the robot can gain on the route.

 

Example 1:

Input: coins = [[0,1,-1],[1,-2,3],[2,-3,4]]

Output: 8

Explanation:

An optimal path for maximum coins is:

  1. Start at (0, 0) with 0 coins (total coins = 0).
  2. Move to (0, 1), gaining 1 coin (total coins = 0 + 1 = 1).
  3. Move to (1, 1), where there's a robber stealing 2 coins. The robot uses one neutralization here, avoiding the robbery (total coins = 1).
  4. Move to (1, 2), gaining 3 coins (total coins = 1 + 3 = 4).
  5. Move to (2, 2), gaining 4 coins (total coins = 4 + 4 = 8).

Example 2:

Input: coins = [[10,10,10],[10,10,10]]

Output: 40

Explanation:

An optimal path for maximum coins is:

  1. Start at (0, 0) with 10 coins (total coins = 10).
  2. Move to (0, 1), gaining 10 coins (total coins = 10 + 10 = 20).
  3. Move to (0, 2), gaining another 10 coins (total coins = 20 + 10 = 30).
  4. Move to (1, 2), gaining the final 10 coins (total coins = 30 + 10 = 40).

 

Constraints:

  • m == coins.length
  • n == coins[i].length
  • 1 <= m, n <= 500
  • -1000 <= coins[i][j] <= 1000

Solutions