3193. Count the Number of Inversions
Description
You are given an integer n
and a 2D array requirements
, where requirements[i] = [endi, cnti]
represents the end index and the inversion count of each requirement.
A pair of indices (i, j)
from an integer array nums
is called an inversion if:
i < j
andnums[i] > nums[j]
Return the number of permutations perm
of [0, 1, 2, ..., n - 1]
such that for all requirements[i]
, perm[0..endi]
has exactly cnti
inversions.
Since the answer may be very large, return it modulo 109 + 7
.
Example 1:
Input: n = 3, requirements = [[2,2],[0,0]]
Output: 2
Explanation:
The two permutations are:
[2, 0, 1]
<ul> <li>Prefix <code>[2, 0, 1]</code> has inversions <code>(0, 1)</code> and <code>(0, 2)</code>.</li> <li>Prefix <code>[2]</code> has 0 inversions.</li> </ul> </li> <li><code>[1, 2, 0]</code> <ul> <li>Prefix <code>[1, 2, 0]</code> has inversions <code>(0, 2)</code> and <code>(1, 2)</code>.</li> <li>Prefix <code>[1]</code> has 0 inversions.</li> </ul> </li>
Example 2:
Input: n = 3, requirements = [[2,2],[1,1],[0,0]]
Output: 1
Explanation:
The only satisfying permutation is [2, 0, 1]
:
- Prefix
[2, 0, 1]
has inversions(0, 1)
and(0, 2)
. - Prefix
[2, 0]
has an inversion(0, 1)
. - Prefix
[2]
has 0 inversions.
Example 3:
Input: n = 2, requirements = [[0,0],[1,0]]
Output: 1
Explanation:
The only satisfying permutation is [0, 1]
:
- Prefix
[0]
has 0 inversions. - Prefix
[0, 1]
has an inversion(0, 1)
.
Constraints:
2 <= n <= 300
1 <= requirements.length <= n
requirements[i] = [endi, cnti]
0 <= endi <= n - 1
0 <= cnti <= 400
- The input is generated such that there is at least one
i
such thatendi == n - 1
. - The input is generated such that all
endi
are unique.
Solutions
Solution 1: Dynamic Programming
We define $f[i][j]$ as the number of permutations of $[0..i]$ with $j$ inversions. Consider the relationship between the number $a_i$ at index $i$ and the previous $i$ numbers. If $a_i$ is smaller than $k$ of the previous numbers, then each of these $k$ numbers forms an inversion pair with $a_i$, contributing to $k$ inversions. Therefore, we can derive the state transition equation:
$$ f[i][j] = \sum_{k=0}^{\min(i, j)} f[i-1][j-k] $$
Since the problem requires the number of inversions in $[0..\textit{end}_i]$ to be $\textit{cnt}_i$, when we calculate for $i = \textit{end}_i$, we only need to compute $f[i][\textit{cnt}_i]$. The rest of $f[i][..]$ will be $0$.
The time complexity is $O(n \times m \times \min(n, m))$, and the space complexity is $O(n \times m)$. Here, $m$ is the maximum number of inversions, and in this problem, $m \le 400$.
Python3
class Solution:
def numberOfPermutations(self, n: int, requirements: List[List[int]]) -> int:
req = [-1] * n
for end, cnt in requirements:
req[end] = cnt
if req[0] > 0:
return 0
req[0] = 0
mod = 10**9 + 7
m = max(req)
f = [[0] * (m + 1) for _ in range(n)]
f[0][0] = 1
for i in range(1, n):
l, r = 0, m
if req[i] >= 0:
l = r = req[i]
for j in range(l, r + 1):
for k in range(min(i, j) + 1):
f[i][j] = (f[i][j] + f[i - 1][j - k]) % mod
return f[n - 1][req[n - 1]]
Java
class Solution {
public int numberOfPermutations(int n, int[][] requirements) {
int[] req = new int[n];
Arrays.fill(req, -1);
int m = 0;
for (var r : requirements) {
req[r[0]] = r[1];
m = Math.max(m, r[1]);
}
if (req[0] > 0) {
return 0;
}
req[0] = 0;
final int mod = (int) 1e9 + 7;
int[][] f = new int[n][m + 1];
f[0][0] = 1;
for (int i = 1; i < n; ++i) {
int l = 0, r = m;
if (req[i] >= 0) {
l = r = req[i];
}
for (int j = l; j <= r; ++j) {
for (int k = 0; k <= Math.min(i, j); ++k) {
f[i][j] = (f[i][j] + f[i - 1][j - k]) % mod;
}
}
}
return f[n - 1][req[n - 1]];
}
}
C++
class Solution {
public:
int numberOfPermutations(int n, vector<vector<int>>& requirements) {
vector<int> req(n, -1);
int m = 0;
for (const auto& r : requirements) {
req[r[0]] = r[1];
m = max(m, r[1]);
}
if (req[0] > 0) {
return 0;
}
req[0] = 0;
const int mod = 1e9 + 7;
vector<vector<int>> f(n, vector<int>(m + 1, 0));
f[0][0] = 1;
for (int i = 1; i < n; ++i) {
int l = 0, r = m;
if (req[i] >= 0) {
l = r = req[i];
}
for (int j = l; j <= r; ++j) {
for (int k = 0; k <= min(i, j); ++k) {
f[i][j] = (f[i][j] + f[i - 1][j - k]) % mod;
}
}
}
return f[n - 1][req[n - 1]];
}
};
Go
func numberOfPermutations(n int, requirements [][]int) int {
req := make([]int, n)
for i := range req {
req[i] = -1
}
for _, r := range requirements {
req[r[0]] = r[1]
}
if req[0] > 0 {
return 0
}
req[0] = 0
m := slices.Max(req)
const mod = int(1e9 + 7)
f := make([][]int, n)
for i := range f {
f[i] = make([]int, m+1)
}
f[0][0] = 1
for i := 1; i < n; i++ {
l, r := 0, m
if req[i] >= 0 {
l, r = req[i], req[i]
}
for j := l; j <= r; j++ {
for k := 0; k <= min(i, j); k++ {
f[i][j] = (f[i][j] + f[i-1][j-k]) % mod
}
}
}
return f[n-1][req[n-1]]
}
TypeScript
function numberOfPermutations(n: number, requirements: number[][]): number {
const req: number[] = Array(n).fill(-1);
for (const [end, cnt] of requirements) {
req[end] = cnt;
}
if (req[0] > 0) {
return 0;
}
req[0] = 0;
const m = Math.max(...req);
const mod = 1e9 + 7;
const f = Array.from({ length: n }, () => Array(m + 1).fill(0));
f[0][0] = 1;
for (let i = 1; i < n; ++i) {
let [l, r] = [0, m];
if (req[i] >= 0) {
l = r = req[i];
}
for (let j = l; j <= r; ++j) {
for (let k = 0; k <= Math.min(i, j); ++k) {
f[i][j] = (f[i][j] + f[i - 1][j - k]) % mod;
}
}
}
return f[n - 1][req[n - 1]];
}