746. Min Cost Climbing Stairs

中文文档

Description

You are given an integer array cost where cost[i] is the cost of ith step on a staircase. Once you pay the cost, you can either climb one or two steps.

You can either start from the step with index 0, or the step with index 1.

Return the minimum cost to reach the top of the floor.

 

Example 1:

Input: cost = [10,15,20]
Output: 15
Explanation: You will start at index 1.
- Pay 15 and climb two steps to reach the top.
The total cost is 15.

Example 2:

Input: cost = [1,100,1,1,1,100,1,1,100,1]
Output: 6
Explanation: You will start at index 0.
- Pay 1 and climb two steps to reach index 2.
- Pay 1 and climb two steps to reach index 4.
- Pay 1 and climb two steps to reach index 6.
- Pay 1 and climb one step to reach index 7.
- Pay 1 and climb two steps to reach index 9.
- Pay 1 and climb one step to reach the top.
The total cost is 6.

 

Constraints:

  • 2 <= cost.length <= 1000
  • 0 <= cost[i] <= 999

Solutions

Solution 2: Dynamic Programming

We define $f[i]$ as the minimum cost needed to reach the $i$-th stair. Initially, $f[0] = f[1] = 0$, and the answer is $f[n]$.

When $i \ge 2$, we can reach the $i$-th stair directly from the $(i - 1)$-th stair with one step, or from the $(i - 2)$-th stair with two steps. Therefore, we have the state transition equation:

$$ f[i] = \min(f[i - 1] + \textit{cost}[i - 1], f[i - 2] + \textit{cost}[i - 2]) $$

The final answer is $f[n]$.

The time complexity is $O(n)$, and the space complexity is $O(n)$, where $n$ is the length of the array $\textit{cost}$.

Python3

class Solution:
    def minCostClimbingStairs(self, cost: List[int]) -> int:
        n = len(cost)
        f = [0] * (n + 1)
        for i in range(2, n + 1):
            f[i] = min(f[i - 2] + cost[i - 2], f[i - 1] + cost[i - 1])
        return f[n]

Java

class Solution {
    public int minCostClimbingStairs(int[] cost) {
        int n = cost.length;
        int[] f = new int[n + 1];
        for (int i = 2; i <= n; ++i) {
            f[i] = Math.min(f[i - 2] + cost[i - 2], f[i - 1] + cost[i - 1]);
        }
        return f[n];
    }
}

C++

class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
        int n = cost.size();
        vector<int> f(n + 1);
        for (int i = 2; i <= n; ++i) {
            f[i] = min(f[i - 2] + cost[i - 2], f[i - 1] + cost[i - 1]);
        }
        return f[n];
    }
};

Go

func minCostClimbingStairs(cost []int) int {
	n := len(cost)
	f := make([]int, n+1)
	for i := 2; i <= n; i++ {
		f[i] = min(f[i-1]+cost[i-1], f[i-2]+cost[i-2])
	}
	return f[n]
}

TypeScript

function minCostClimbingStairs(cost: number[]): number {
    const n = cost.length;
    const f: number[] = Array(n + 1).fill(0);
    for (let i = 2; i <= n; ++i) {
        f[i] = Math.min(f[i - 1] + cost[i - 1], f[i - 2] + cost[i - 2]);
    }
    return f[n];
}

Rust

impl Solution {
    pub fn min_cost_climbing_stairs(cost: Vec<i32>) -> i32 {
        let n = cost.len();
        let mut f = vec![0; n + 1];
        for i in 2..=n {
            f[i] = std::cmp::min(f[i - 2] + cost[i - 2], f[i - 1] + cost[i - 1]);
        }
        f[n]
    }
}

JavaScript

function minCostClimbingStairs(cost) {
    const n = cost.length;
    const f = Array(n + 1).fill(0);
    for (let i = 2; i <= n; ++i) {
        f[i] = Math.min(f[i - 1] + cost[i - 1], f[i - 2] + cost[i - 2]);
    }
    return f[n];
}

Solution 3: Dynamic Programming (Space Optimization)

We notice that the state transition equation for $f[i]$ only depends on $f[i - 1]$ and $f[i - 2]$. Therefore, we can use two variables $f$ and $g$ to alternately record the values of $f[i - 2]$ and $f[i - 1]$, thus optimizing the space complexity to $O(1)$.

Python3

class Solution:
    def minCostClimbingStairs(self, cost: List[int]) -> int:
        f = g = 0
        for i in range(2, len(cost) + 1):
            f, g = g, min(f + cost[i - 2], g + cost[i - 1])
        return g

Java

class Solution {
    public int minCostClimbingStairs(int[] cost) {
        int f = 0, g = 0;
        for (int i = 2; i <= cost.length; ++i) {
            int gg = Math.min(f + cost[i - 2], g + cost[i - 1]);
            f = g;
            g = gg;
        }
        return g;
    }
}

C++

class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
        int f = 0, g = 0;
        for (int i = 2; i <= cost.size(); ++i) {
            int gg = min(f + cost[i - 2], g + cost[i - 1]);
            f = g;
            g = gg;
        }
        return g;
    }
};

Go

func minCostClimbingStairs(cost []int) int {
	var f, g int
	for i := 2; i <= n; i++ {
		f, g = g, min(f+cost[i-2], g+cost[i-1])
	}
	return g
}

TypeScript

function minCostClimbingStairs(cost: number[]): number {
    let [f, g] = [0, 0];
    for (let i = 1; i < cost.length; ++i) {
        [f, g] = [g, Math.min(f + cost[i - 1], g + cost[i])];
    }
    return g;
}

Rust

impl Solution {
    pub fn min_cost_climbing_stairs(cost: Vec<i32>) -> i32 {
        let (mut f, mut g) = (0, 0);
        for i in 2..=cost.len() {
            let gg = std::cmp::min(f + cost[i - 2], g + cost[i - 1]);
            f = g;
            g = gg;
        }
        g
    }
}

JavaScript

function minCostClimbingStairs(cost) {
    let [f, g] = [0, 0];
    for (let i = 1; i < cost.length; ++i) {
        [f, g] = [g, Math.min(f + cost[i - 1], g + cost[i])];
    }
    return g;
}