1603. Design Parking System
Description
Design a parking system for a parking lot. The parking lot has three kinds of parking spaces: big, medium, and small, with a fixed number of slots for each size.
Implement the ParkingSystem
class:
ParkingSystem(int big, int medium, int small)
Initializes object of theParkingSystem
class. The number of slots for each parking space are given as part of the constructor.bool addCar(int carType)
Checks whether there is a parking space ofcarType
for the car that wants to get into the parking lot.carType
can be of three kinds: big, medium, or small, which are represented by1
,2
, and3
respectively. A car can only park in a parking space of itscarType
. If there is no space available, returnfalse
, else park the car in that size space and returntrue
.
Example 1:
Input ["ParkingSystem", "addCar", "addCar", "addCar", "addCar"] [[1, 1, 0], [1], [2], [3], [1]] Output [null, true, true, false, false] Explanation ParkingSystem parkingSystem = new ParkingSystem(1, 1, 0); parkingSystem.addCar(1); // return true because there is 1 available slot for a big car parkingSystem.addCar(2); // return true because there is 1 available slot for a medium car parkingSystem.addCar(3); // return false because there is no available slot for a small car parkingSystem.addCar(1); // return false because there is no available slot for a big car. It is already occupied.
Constraints:
0 <= big, medium, small <= 1000
carType
is1
,2
, or3
- At most
1000
calls will be made toaddCar
Solutions
Solution 1: Simulation
We use an array $\textit{cnt}$ of length 4 to represent the number of parking spaces for each type of car, where $\textit{cnt}[1]$, $\textit{cnt}[2]$, and $\textit{cnt}[3]$ represent the number of large, medium, and small parking spaces, respectively.
During initialization, we set $\textit{cnt}[1]$, $\textit{cnt}[2]$, and $\textit{cnt}[3]$ to the number of large, medium, and small parking spaces, respectively.
Each time a car parks, we check if there is a corresponding parking space in the parking lot. If not, we return $\textit{false}$; otherwise, we decrement the number of corresponding parking spaces by one and return $\textit{true}$.
The time complexity is $O(1)$, and the space complexity is $O(1)$.
Python3
class ParkingSystem:
def __init__(self, big: int, medium: int, small: int):
self.cnt = [0, big, medium, small]
def addCar(self, carType: int) -> bool:
if self.cnt[carType] == 0:
return False
self.cnt[carType] -= 1
return True
# Your ParkingSystem object will be instantiated and called as such:
# obj = ParkingSystem(big, medium, small)
# param_1 = obj.addCar(carType)
Java
class ParkingSystem {
private int[] cnt;
public ParkingSystem(int big, int medium, int small) {
cnt = new int[] {0, big, medium, small};
}
public boolean addCar(int carType) {
if (cnt[carType] == 0) {
return false;
}
--cnt[carType];
return true;
}
}
/**
* Your ParkingSystem object will be instantiated and called as such:
* ParkingSystem obj = new ParkingSystem(big, medium, small);
* boolean param_1 = obj.addCar(carType);
*/
C++
class ParkingSystem {
public:
ParkingSystem(int big, int medium, int small) {
cnt = {0, big, medium, small};
}
bool addCar(int carType) {
if (cnt[carType] == 0) {
return false;
}
--cnt[carType];
return true;
}
private:
vector<int> cnt;
};
/**
* Your ParkingSystem object will be instantiated and called as such:
* ParkingSystem* obj = new ParkingSystem(big, medium, small);
* bool param_1 = obj->addCar(carType);
*/
Go
type ParkingSystem struct {
cnt []int
}
func Constructor(big int, medium int, small int) ParkingSystem {
return ParkingSystem{[]int{0, big, medium, small}}
}
func (this *ParkingSystem) AddCar(carType int) bool {
if this.cnt[carType] == 0 {
return false
}
this.cnt[carType]--
return true
}
/**
* Your ParkingSystem object will be instantiated and called as such:
* obj := Constructor(big, medium, small);
* param_1 := obj.AddCar(carType);
*/
TypeScript
class ParkingSystem {
private cnt: [number, number, number, number];
constructor(big: number, medium: number, small: number) {
this.cnt = [0, big, medium, small];
}
addCar(carType: number): boolean {
if (this.cnt[carType] === 0) {
return false;
}
this.cnt[carType]--;
return true;
}
}
/**
* Your ParkingSystem object will be instantiated and called as such:
* var obj = new ParkingSystem(big, medium, small)
* var param_1 = obj.addCar(carType)
*/
Rust
struct ParkingSystem {
cnt: [i32; 4]
}
impl ParkingSystem {
fn new(big: i32, medium: i32, small: i32) -> Self {
ParkingSystem {
cnt: [0, big, medium, small],
}
}
fn add_car(&mut self, car_type: i32) -> bool {
if self.cnt[car_type as usize] == 0 {
return false;
}
self.cnt[car_type as usize] -= 1;
true
}
}
C#
public class ParkingSystem {
private List<int> cnt;
public ParkingSystem(int big, int medium, int small) {
cnt = new List<int>() {0 , big, medium, small};
}
public bool AddCar(int carType) {
if (cnt[carType] == 0) {
return false;
}
--cnt[carType];
return true;
}
}
/**
* Your ParkingSystem object will be instantiated and called as such:
* ParkingSystem obj = new ParkingSystem(big, medium, small);
* bool param_1 = obj.AddCar(carType);
*/
C
typedef struct {
int* count;
} ParkingSystem;
ParkingSystem* parkingSystemCreate(int big, int medium, int small) {
ParkingSystem* res = malloc(sizeof(ParkingSystem));
res->count = malloc(sizeof(int) * 3);
res->count[0] = big;
res->count[1] = medium;
res->count[2] = small;
return res;
}
bool parkingSystemAddCar(ParkingSystem* obj, int carType) {
int i = carType - 1;
if (!obj->count[i]) {
return 0;
}
obj->count[i]--;
return 1;
}
void parkingSystemFree(ParkingSystem* obj) {
free(obj);
}
/**
* Your ParkingSystem struct will be instantiated and called as such:
* ParkingSystem* obj = parkingSystemCreate(big, medium, small);
* bool param_1 = parkingSystemAddCar(obj, carType);
* parkingSystemFree(obj);
*/