629. K Inverse Pairs Array
Description
For an integer array nums
, an inverse pair is a pair of integers [i, j]
where 0 <= i < j < nums.length
and nums[i] > nums[j]
.
Given two integers n and k, return the number of different arrays consisting of numbers from 1
to n
such that there are exactly k
inverse pairs. Since the answer can be huge, return it modulo 109 + 7
.
Example 1:
Input: n = 3, k = 0 Output: 1 Explanation: Only the array [1,2,3] which consists of numbers from 1 to 3 has exactly 0 inverse pairs.
Example 2:
Input: n = 3, k = 1 Output: 2 Explanation: The array [1,3,2] and [2,1,3] have exactly 1 inverse pair.
Constraints:
1 <= n <= 1000
0 <= k <= 1000
Solutions
Solution 1: Dynamic Programming + Prefix Sum
We define $f[i][j]$ as the number of arrays of length $i$ with $j$ inverse pairs. Initially, $f[0][0] = 1$, and the rest $f[i][j] = 0$.
Next, we consider how to obtain $f[i][j]$.
Assume the first $i-1$ numbers are already determined, and now we need to insert the number $i$. We discuss the cases of inserting $i$ into each position:
If $i$ is inserted into the 1st position, the number of inverse pairs increases by $i-1$, so $f[i][j] += f[i-1][j-(i-1)]$.
If $i$ is inserted into the 2nd position, the number of inverse pairs increases by $i-2$, so $f[i][j] += f[i-1][j-(i-2)]$.
...
If $i$ is inserted into the $(i-1)$th position, the number of inverse pairs increases by 1, so $f[i][j] += f[i-1][j-1]$.
If $i$ is inserted into the $i$th position, the number of inverse pairs does not change, so $f[i][j] += f[i-1][j]$.
Therefore, $f[i][j] = \sum_{k=1}^{i} f[i-1][j-(i-k)]$.
We notice that the calculation of $f[i][j]$ actually involves prefix sums, so we can use prefix sums to optimize the calculation process. Moreover, since $f[i][j]$ only depends on $f[i-1][j]$, we can use a one-dimensional array to optimize the space complexity.
The time complexity is $O(n \times k)$, and the space complexity is $O(k)$. Here, $n$ and $k$ are the array length and the number of inverse pairs, respectively.
Python3
class Solution:
def kInversePairs(self, n: int, k: int) -> int:
mod = 10**9 + 7
f = [1] + [0] * k
s = [0] * (k + 2)
for i in range(1, n + 1):
for j in range(1, k + 1):
f[j] = (s[j + 1] - s[max(0, j - (i - 1))]) % mod
for j in range(1, k + 2):
s[j] = (s[j - 1] + f[j - 1]) % mod
return f[k]
Java
class Solution {
public int kInversePairs(int n, int k) {
final int mod = (int) 1e9 + 7;
int[] f = new int[k + 1];
int[] s = new int[k + 2];
f[0] = 1;
Arrays.fill(s, 1);
s[0] = 0;
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= k; ++j) {
f[j] = (s[j + 1] - s[Math.max(0, j - (i - 1))] + mod) % mod;
}
for (int j = 1; j <= k + 1; ++j) {
s[j] = (s[j - 1] + f[j - 1]) % mod;
}
}
return f[k];
}
}
C++
class Solution {
public:
int kInversePairs(int n, int k) {
int f[k + 1];
int s[k + 2];
memset(f, 0, sizeof(f));
f[0] = 1;
fill(s, s + k + 2, 1);
s[0] = 0;
const int mod = 1e9 + 7;
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= k; ++j) {
f[j] = (s[j + 1] - s[max(0, j - (i - 1))] + mod) % mod;
}
for (int j = 1; j <= k + 1; ++j) {
s[j] = (s[j - 1] + f[j - 1]) % mod;
}
}
return f[k];
}
};
Go
func kInversePairs(n int, k int) int {
f := make([]int, k+1)
s := make([]int, k+2)
f[0] = 1
for i, x := range f {
s[i+1] = s[i] + x
}
const mod = 1e9 + 7
for i := 1; i <= n; i++ {
for j := 1; j <= k; j++ {
f[j] = (s[j+1] - s[max(0, j-(i-1))] + mod) % mod
}
for j := 1; j <= k+1; j++ {
s[j] = (s[j-1] + f[j-1]) % mod
}
}
return f[k]
}
TypeScript
function kInversePairs(n: number, k: number): number {
const f: number[] = Array(k + 1).fill(0);
f[0] = 1;
const s: number[] = Array(k + 2).fill(1);
s[0] = 0;
const mod: number = 1e9 + 7;
for (let i = 1; i <= n; ++i) {
for (let j = 1; j <= k; ++j) {
f[j] = (s[j + 1] - s[Math.max(0, j - (i - 1))] + mod) % mod;
}
for (let j = 1; j <= k + 1; ++j) {
s[j] = (s[j - 1] + f[j - 1]) % mod;
}
}
return f[k];
}