3082. Find the Sum of the Power of All Subsequences
Description
You are given an integer array nums
of length n
and a positive integer k
.
The power of an array of integers is defined as the number of subsequences with their sum equal to k
.
Return the sum of power of all subsequences of nums
.
Since the answer may be very large, return it modulo 109 + 7
.
Example 1:
Input: nums = [1,2,3], k = 3
Output: 6
Explanation:
There are 5
subsequences of nums with non-zero power:
- The subsequence
[1,2,3]
has2
subsequences withsum == 3
:[1,2,3]
and[1,2,3]
. - The subsequence
[1,2,3]
has1
subsequence withsum == 3
:[1,2,3]
. - The subsequence
[1,2,3]
has1
subsequence withsum == 3
:[1,2,3]
. - The subsequence
[1,2,3]
has1
subsequence withsum == 3
:[1,2,3]
. - The subsequence
[1,2,3]
has1
subsequence withsum == 3
:[1,2,3]
.
Hence the answer is 2 + 1 + 1 + 1 + 1 = 6
.
Example 2:
Input: nums = [2,3,3], k = 5
Output: 4
Explanation:
There are 3
subsequences of nums with non-zero power:
- The subsequence
[2,3,3]
has 2 subsequences withsum == 5
:[2,3,3]
and[2,3,3]
. - The subsequence
[2,3,3]
has 1 subsequence withsum == 5
:[2,3,3]
. - The subsequence
[2,3,3]
has 1 subsequence withsum == 5
:[2,3,3]
.
Hence the answer is 2 + 1 + 1 = 4
.
Example 3:
Input: nums = [1,2,3], k = 7
Output: 0
Explanation: There exists no subsequence with sum 7
. Hence all subsequences of nums have power = 0
.
Constraints:
1 <= n <= 100
1 <= nums[i] <= 104
1 <= k <= 100
Solutions
Solution 1: Dynamic Programming
The problem requires us to find all subsequences $\textit{S}$ in the given array $\textit{nums}$, and then calculate the number of ways for each subsequence $\textit{T}$ such that the sum of $\textit{T}$ equals $\textit{k}$.
We define $f[i][j]$ to represent the number of ways to form subsequences with the first $i$ numbers such that the sum of each subsequence equals $j$. Initially, $f[0][0] = 1$, and all other positions are $0$.
For the $i$-th number $x$, there are three cases:
Not in the subsequence $\textit{S}$, in which case $f[i][j] = f[i-1][j]$;
In the subsequence $\textit{S}$, but not in the subsequence $\textit{T}$, in which case $f[i][j] = f[i-1][j]$;
In the subsequence $\textit{S}$, and in the subsequence $\textit{T}$, in which case $f[i][j] = f[i-1][j-x]$.
In summary, the state transition equation is:
$$ f[i][j] = f[i-1][j] \times 2 + f[i-1][j-x] $$
The final answer is $f[n][k]$.
The time complexity is $O(n \times k)$, and the space complexity is $O(n \times k)$. Here, $n$ is the length of the array $\textit{nums}$, and $k$ is the given positive integer.
Python3
class Solution:
def sumOfPower(self, nums: List[int], k: int) -> int:
mod = 10**9 + 7
n = len(nums)
f = [[0] * (k + 1) for _ in range(n + 1)]
f[0][0] = 1
for i, x in enumerate(nums, 1):
for j in range(k + 1):
f[i][j] = f[i - 1][j] * 2 % mod
if j >= x:
f[i][j] = (f[i][j] + f[i - 1][j - x]) % mod
return f[n][k]
Java
class Solution {
public int sumOfPower(int[] nums, int k) {
final int mod = (int) 1e9 + 7;
int n = nums.length;
int[][] f = new int[n + 1][k + 1];
f[0][0] = 1;
for (int i = 1; i <= n; ++i) {
for (int j = 0; j <= k; ++j) {
f[i][j] = (f[i - 1][j] * 2) % mod;
if (j >= nums[i - 1]) {
f[i][j] = (f[i][j] + f[i - 1][j - nums[i - 1]]) % mod;
}
}
}
return f[n][k];
}
}
C++
class Solution {
public:
int sumOfPower(vector<int>& nums, int k) {
const int mod = 1e9 + 7;
int n = nums.size();
int f[n + 1][k + 1];
memset(f, 0, sizeof(f));
f[0][0] = 1;
for (int i = 1; i <= n; ++i) {
for (int j = 0; j <= k; ++j) {
f[i][j] = (f[i - 1][j] * 2) % mod;
if (j >= nums[i - 1]) {
f[i][j] = (f[i][j] + f[i - 1][j - nums[i - 1]]) % mod;
}
}
}
return f[n][k];
}
};
Go
func sumOfPower(nums []int, k int) int {
const mod int = 1e9 + 7
n := len(nums)
f := make([][]int, n+1)
for i := range f {
f[i] = make([]int, k+1)
}
f[0][0] = 1
for i := 1; i <= n; i++ {
for j := 0; j <= k; j++ {
f[i][j] = (f[i-1][j] * 2) % mod
if j >= nums[i-1] {
f[i][j] = (f[i][j] + f[i-1][j-nums[i-1]]) % mod
}
}
}
return f[n][k]
}
TypeScript
function sumOfPower(nums: number[], k: number): number {
const mod = 10 ** 9 + 7;
const n = nums.length;
const f: number[][] = Array.from({ length: n + 1 }, () => Array(k + 1).fill(0));
f[0][0] = 1;
for (let i = 1; i <= n; ++i) {
for (let j = 0; j <= k; ++j) {
f[i][j] = (f[i - 1][j] * 2) % mod;
if (j >= nums[i - 1]) {
f[i][j] = (f[i][j] + f[i - 1][j - nums[i - 1]]) % mod;
}
}
}
return f[n][k];
}
Solution 2: Dynamic Programming (Optimization)
In the state transition equation from Solution 1, the value of $f[i][j]$ only depends on $f[i-1][j]$ and $f[i-1][j-x]$. Therefore, we can optimize the first dimension of the space, reducing the space complexity to $O(k)$.
Time complexity is $O(n \times k)$, and space complexity is $O(k)$. Here, $n$ is the length of the array $\textit{nums}$, and $k$ is the given positive integer.
Python3
class Solution:
def sumOfPower(self, nums: List[int], k: int) -> int:
mod = 10**9 + 7
f = [1] + [0] * k
for x in nums:
for j in range(k, -1, -1):
f[j] = (f[j] * 2 + (0 if j < x else f[j - x])) % mod
return f[k]
Java
class Solution {
public int sumOfPower(int[] nums, int k) {
final int mod = (int) 1e9 + 7;
int[] f = new int[k + 1];
f[0] = 1;
for (int x : nums) {
for (int j = k; j >= 0; --j) {
f[j] = (f[j] * 2 % mod + (j >= x ? f[j - x] : 0)) % mod;
}
}
return f[k];
}
}
C++
class Solution {
public:
int sumOfPower(vector<int>& nums, int k) {
const int mod = 1e9 + 7;
int f[k + 1];
memset(f, 0, sizeof(f));
f[0] = 1;
for (int x : nums) {
for (int j = k; j >= 0; --j) {
f[j] = (f[j] * 2 % mod + (j >= x ? f[j - x] : 0)) % mod;
}
}
return f[k];
}
};
Go
func sumOfPower(nums []int, k int) int {
const mod int = 1e9 + 7
f := make([]int, k+1)
f[0] = 1
for _, x := range nums {
for j := k; j >= 0; j-- {
f[j] = f[j] * 2 % mod
if j >= x {
f[j] = (f[j] + f[j-x]) % mod
}
}
}
return f[k]
}
TypeScript
function sumOfPower(nums: number[], k: number): number {
const mod = 10 ** 9 + 7;
const f: number[] = Array(k + 1).fill(0);
f[0] = 1;
for (const x of nums) {
for (let j = k; ~j; --j) {
f[j] = (f[j] * 2) % mod;
if (j >= x) {
f[j] = (f[j] + f[j - x]) % mod;
}
}
}
return f[k];
}