846. Hand of Straights

中文文档

Description

Alice has some number of cards and she wants to rearrange the cards into groups so that each group is of size groupSize, and consists of groupSize consecutive cards.

Given an integer array hand where hand[i] is the value written on the ith card and an integer groupSize, return true if she can rearrange the cards, or false otherwise.

 

Example 1:

Input: hand = [1,2,3,6,2,3,4,7,8], groupSize = 3
Output: true
Explanation: Alice's hand can be rearranged as [1,2,3],[2,3,4],[6,7,8]

Example 2:

Input: hand = [1,2,3,4,5], groupSize = 4
Output: false
Explanation: Alice's hand can not be rearranged into groups of 4.

 

Constraints:

  • 1 <= hand.length <= 104
  • 0 <= hand[i] <= 109
  • 1 <= groupSize <= hand.length

 

Note: This question is the same as 1296: https://leetcode.com/problems/divide-array-in-sets-of-k-consecutive-numbers/

Solutions

Solution 1: Hash Table + Sorting

We first check whether the length of the array $\textit{hand}$ is divisible by $\textit{groupSize}$. If it is not, this means that the array cannot be partitioned into multiple subarrays of length $\textit{groupSize}$, so we return $\text{false}$.

Next, we use a hash table $\textit{cnt}$ to count the occurrences of each number in the array $\textit{hand}$, and then we sort the array $\textit{hand}$.

After that, we iterate over the sorted array $\textit{hand}$. For each number $x$, if $\textit{cnt}[x] \neq 0$, we enumerate every number $y$ from $x$ to $x + \textit{groupSize} - 1$. If $\textit{cnt}[y] = 0$, it means that we cannot partition the array into multiple subarrays of length $\textit{groupSize}$, so we return $\text{false}$. Otherwise, we decrement $\textit{cnt}[y]$ by $1$.

If the iteration completes successfully, it means that the array can be partitioned into multiple valid subarrays, so we return $\text{true}$.

The time complexity is $O(n \times \log n)$, and the space complexity is $O(n)$, where $n$ is the length of the array $\textit{hand}$.

Python3

class Solution:
    def isNStraightHand(self, hand: List[int], groupSize: int) -> bool:
        if len(hand) % groupSize:
            return False
        cnt = Counter(hand)
        for x in sorted(hand):
            if cnt[x]:
                for y in range(x, x + groupSize):
                    if cnt[y] == 0:
                        return False
                    cnt[y] -= 1
        return True

Java

class Solution {
    public boolean isNStraightHand(int[] hand, int groupSize) {
        if (hand.length % groupSize != 0) {
            return false;
        }
        Arrays.sort(hand);
        Map<Integer, Integer> cnt = new HashMap<>();
        for (int x : hand) {
            cnt.merge(x, 1, Integer::sum);
        }
        for (int x : hand) {
            if (cnt.getOrDefault(x, 0) > 0) {
                for (int y = x; y < x + groupSize; ++y) {
                    if (cnt.merge(y, -1, Integer::sum) < 0) {
                        return false;
                    }
                }
            }
        }
        return true;
    }
}

C++

class Solution {
public:
    bool isNStraightHand(vector<int>& hand, int groupSize) {
        if (hand.size() % groupSize) {
            return false;
        }
        ranges::sort(hand);
        unordered_map<int, int> cnt;
        for (int x : hand) {
            ++cnt[x];
        }
        for (int x : hand) {
            if (cnt.contains(x)) {
                for (int y = x; y < x + groupSize; ++y) {
                    if (!cnt.contains(y)) {
                        return false;
                    }
                    if (--cnt[y] == 0) {
                        cnt.erase(y);
                    }
                }
            }
        }
        return true;
    }
};

Go

func isNStraightHand(hand []int, groupSize int) bool {
	if len(hand)%groupSize != 0 {
		return false
	}
	sort.Ints(hand)
	cnt := map[int]int{}
	for _, x := range hand {
		cnt[x]++
	}
	for _, x := range hand {
		if cnt[x] > 0 {
			for y := x; y < x+groupSize; y++ {
				if cnt[y] == 0 {
					return false
				}
				cnt[y]--
			}
		}
	}
	return true
}

TypeScript

function isNStraightHand(hand: number[], groupSize: number): boolean {
    if (hand.length % groupSize !== 0) {
        return false;
    }
    const cnt = new Map<number, number>();
    for (const x of hand) {
        cnt.set(x, (cnt.get(x) || 0) + 1);
    }
    hand.sort((a, b) => a - b);
    for (const x of hand) {
        if (cnt.get(x)! > 0) {
            for (let y = x; y < x + groupSize; y++) {
                if ((cnt.get(y) || 0) === 0) {
                    return false;
                }
                cnt.set(y, cnt.get(y)! - 1);
            }
        }
    }
    return true;
}

Solution 2: Ordered Set

Similar to Solution 1, we first check whether the length of the array $\textit{hand}$ is divisible by $\textit{groupSize}$. If it is not, this means that the array cannot be partitioned into multiple subarrays of length $\textit{groupSize}$, so we return $\text{false}$.

Next, we use an ordered set $\textit{sd}$ to count the occurrences of each number in the array $\textit{hand}$.

Then, we repeatedly take the smallest value $x$ from the ordered set and enumerate each number $y$ from $x$ to $x + \textit{groupSize} - 1$. If all these numbers appear at least once in the ordered set, we decrement their occurrence count by $1$. If any count reaches $0$, we remove that number from the ordered set. Otherwise, if we encounter a number that does not exist in the ordered set, it means that the array cannot be partitioned into valid subarrays, so we return $\text{false}$. If the iteration completes successfully, it means that the array can be partitioned into multiple valid subarrays, so we return $\text{true}$.

The time complexity is $O(n \times \log n)$, and the space complexity is $O(n)$, where $n$ is the length of the array $\textit{hand}$.

Python3

class Solution:
    def isNStraightHand(self, hand: List[int], groupSize: int) -> bool:
        if len(hand) % groupSize:
            return False
        cnt = Counter(hand)
        sd = SortedDict(cnt)
        while sd:
            x = next(iter(sd))
            for y in range(x, x + groupSize):
                if y not in sd:
                    return False
                if sd[y] == 1:
                    del sd[y]
                else:
                    sd[y] -= 1
        return True

Java

class Solution {
    public boolean isNStraightHand(int[] hand, int groupSize) {
        if (hand.length % groupSize != 0) {
            return false;
        }
        TreeMap<Integer, Integer> tm = new TreeMap<>();
        for (int x : hand) {
            tm.merge(x, 1, Integer::sum);
        }
        while (!tm.isEmpty()) {
            int x = tm.firstKey();
            for (int y = x; y < x + groupSize; ++y) {
                int t = tm.merge(y, -1, Integer::sum);
                if (t < 0) {
                    return false;
                }
                if (t == 0) {
                    tm.remove(y);
                }
            }
        }
        return true;
    }
}

C++

class Solution {
public:
    bool isNStraightHand(vector<int>& hand, int groupSize) {
        if (hand.size() % groupSize) {
            return false;
        }
        map<int, int> mp;
        for (int x : hand) {
            ++mp[x];
        }
        while (!mp.empty()) {
            int x = mp.begin()->first;
            for (int y = x; y < x + groupSize; ++y) {
                if (!mp.contains(y)) {
                    return false;
                }
                if (--mp[y] == 0) {
                    mp.erase(y);
                }
            }
        }
        return true;
    }
};

Go

func isNStraightHand(hand []int, groupSize int) bool {
	if len(hand)%groupSize != 0 {
		return false
	}
	tm := treemap.NewWithIntComparator()
	for _, x := range hand {
		if v, ok := tm.Get(x); ok {
			tm.Put(x, v.(int)+1)
		} else {
			tm.Put(x, 1)
		}
	}
	for !tm.Empty() {
		x, _ := tm.Min()
		for y := x.(int); y < x.(int)+groupSize; y++ {
			if v, ok := tm.Get(y); ok {
				if v.(int) == 1 {
					tm.Remove(y)
				} else {
					tm.Put(y, v.(int)-1)
				}
			} else {
				return false
			}
		}
	}
	return true
}

TypeScript

function isNStraightHand(hand: number[], groupSize: number): boolean {
    if (hand.length % groupSize !== 0) {
        return false;
    }
    const tm = new TreeMap<number, number>();
    for (const x of hand) {
        tm.set(x, (tm.get(x) || 0) + 1);
    }
    while (tm.size()) {
        const x = tm.first()![0];
        for (let y = x; y < x + groupSize; ++y) {
            if (!tm.has(y)) {
                return false;
            }
            if (tm.get(y)! === 1) {
                tm.delete(y);
            } else {
                tm.set(y, tm.get(y)! - 1);
            }
        }
    }
    return true;
}

type Compare<T> = (lhs: T, rhs: T) => number;

class RBTreeNode<T = number> {
    data: T;
    count: number;
    left: RBTreeNode<T> | null;
    right: RBTreeNode<T> | null;
    parent: RBTreeNode<T> | null;
    color: number;
    constructor(data: T) {
        this.data = data;
        this.left = this.right = this.parent = null;
        this.color = 0;
        this.count = 1;
    }

    sibling(): RBTreeNode<T> | null {
        if (!this.parent) return null; // sibling null if no parent
        return this.isOnLeft() ? this.parent.right : this.parent.left;
    }

    isOnLeft(): boolean {
        return this === this.parent!.left;
    }

    hasRedChild(): boolean {
        return (
            Boolean(this.left && this.left.color === 0) ||
            Boolean(this.right && this.right.color === 0)
        );
    }
}

class RBTree<T> {
    root: RBTreeNode<T> | null;
    lt: (l: T, r: T) => boolean;
    constructor(compare: Compare<T> = (l: T, r: T) => (l < r ? -1 : l > r ? 1 : 0)) {
        this.root = null;
        this.lt = (l: T, r: T) => compare(l, r) < 0;
    }

    rotateLeft(pt: RBTreeNode<T>): void {
        const right = pt.right!;
        pt.right = right.left;

        if (pt.right) pt.right.parent = pt;
        right.parent = pt.parent;

        if (!pt.parent) this.root = right;
        else if (pt === pt.parent.left) pt.parent.left = right;
        else pt.parent.right = right;

        right.left = pt;
        pt.parent = right;
    }

    rotateRight(pt: RBTreeNode<T>): void {
        const left = pt.left!;
        pt.left = left.right;

        if (pt.left) pt.left.parent = pt;
        left.parent = pt.parent;

        if (!pt.parent) this.root = left;
        else if (pt === pt.parent.left) pt.parent.left = left;
        else pt.parent.right = left;

        left.right = pt;
        pt.parent = left;
    }

    swapColor(p1: RBTreeNode<T>, p2: RBTreeNode<T>): void {
        const tmp = p1.color;
        p1.color = p2.color;
        p2.color = tmp;
    }

    swapData(p1: RBTreeNode<T>, p2: RBTreeNode<T>): void {
        const tmp = p1.data;
        p1.data = p2.data;
        p2.data = tmp;
    }

    fixAfterInsert(pt: RBTreeNode<T>): void {
        let parent = null;
        let grandParent = null;

        while (pt !== this.root && pt.color !== 1 && pt.parent?.color === 0) {
            parent = pt.parent;
            grandParent = pt.parent.parent;

            /*  Case : A
                Parent of pt is left child of Grand-parent of pt */
            if (parent === grandParent?.left) {
                const uncle = grandParent.right;

                /* Case : 1
                   The uncle of pt is also red
                   Only Recoloring required */
                if (uncle && uncle.color === 0) {
                    grandParent.color = 0;
                    parent.color = 1;
                    uncle.color = 1;
                    pt = grandParent;
                } else {
                    /* Case : 2
                       pt is right child of its parent
                       Left-rotation required */
                    if (pt === parent.right) {
                        this.rotateLeft(parent);
                        pt = parent;
                        parent = pt.parent;
                    }

                    /* Case : 3
                       pt is left child of its parent
                       Right-rotation required */
                    this.rotateRight(grandParent);
                    this.swapColor(parent!, grandParent);
                    pt = parent!;
                }
            } else {
                /* Case : B
               Parent of pt is right child of Grand-parent of pt */
                const uncle = grandParent!.left;

                /*  Case : 1
                    The uncle of pt is also red
                    Only Recoloring required */
                if (uncle != null && uncle.color === 0) {
                    grandParent!.color = 0;
                    parent.color = 1;
                    uncle.color = 1;
                    pt = grandParent!;
                } else {
                    /* Case : 2
                       pt is left child of its parent
                       Right-rotation required */
                    if (pt === parent.left) {
                        this.rotateRight(parent);
                        pt = parent;
                        parent = pt.parent;
                    }

                    /* Case : 3
                       pt is right child of its parent
                       Left-rotation required */
                    this.rotateLeft(grandParent!);
                    this.swapColor(parent!, grandParent!);
                    pt = parent!;
                }
            }
        }
        this.root!.color = 1;
    }

    delete(val: T): boolean {
        const node = this.find(val);
        if (!node) return false;
        node.count--;
        if (!node.count) this.deleteNode(node);
        return true;
    }

    deleteAll(val: T): boolean {
        const node = this.find(val);
        if (!node) return false;
        this.deleteNode(node);
        return true;
    }

    deleteNode(v: RBTreeNode<T>): void {
        const u = BSTreplace(v);

        // True when u and v are both black
        const uvBlack = (u === null || u.color === 1) && v.color === 1;
        const parent = v.parent!;

        if (!u) {
            // u is null therefore v is leaf
            if (v === this.root) this.root = null;
            // v is root, making root null
            else {
                if (uvBlack) {
                    // u and v both black
                    // v is leaf, fix double black at v
                    this.fixDoubleBlack(v);
                } else {
                    // u or v is red
                    if (v.sibling()) {
                        // sibling is not null, make it red"
                        v.sibling()!.color = 0;
                    }
                }
                // delete v from the tree
                if (v.isOnLeft()) parent.left = null;
                else parent.right = null;
            }
            return;
        }

        if (!v.left || !v.right) {
            // v has 1 child
            if (v === this.root) {
                // v is root, assign the value of u to v, and delete u
                v.data = u.data;
                v.left = v.right = null;
            } else {
                // Detach v from tree and move u up
                if (v.isOnLeft()) parent.left = u;
                else parent.right = u;
                u.parent = parent;
                if (uvBlack) this.fixDoubleBlack(u);
                // u and v both black, fix double black at u
                else u.color = 1; // u or v red, color u black
            }
            return;
        }

        // v has 2 children, swap data with successor and recurse
        this.swapData(u, v);
        this.deleteNode(u);

        // find node that replaces a deleted node in BST
        function BSTreplace(x: RBTreeNode<T>): RBTreeNode<T> | null {
            // when node have 2 children
            if (x.left && x.right) return successor(x.right);
            // when leaf
            if (!x.left && !x.right) return null;
            // when single child
            return x.left ?? x.right;
        }
        // find node that do not have a left child
        // in the subtree of the given node
        function successor(x: RBTreeNode<T>): RBTreeNode<T> {
            let temp = x;
            while (temp.left) temp = temp.left;
            return temp;
        }
    }

    fixDoubleBlack(x: RBTreeNode<T>): void {
        if (x === this.root) return; // Reached root

        const sibling = x.sibling();
        const parent = x.parent!;
        if (!sibling) {
            // No sibiling, double black pushed up
            this.fixDoubleBlack(parent);
        } else {
            if (sibling.color === 0) {
                // Sibling red
                parent.color = 0;
                sibling.color = 1;
                if (sibling.isOnLeft()) this.rotateRight(parent);
                // left case
                else this.rotateLeft(parent); // right case
                this.fixDoubleBlack(x);
            } else {
                // Sibling black
                if (sibling.hasRedChild()) {
                    // at least 1 red children
                    if (sibling.left && sibling.left.color === 0) {
                        if (sibling.isOnLeft()) {
                            // left left
                            sibling.left.color = sibling.color;
                            sibling.color = parent.color;
                            this.rotateRight(parent);
                        } else {
                            // right left
                            sibling.left.color = parent.color;
                            this.rotateRight(sibling);
                            this.rotateLeft(parent);
                        }
                    } else {
                        if (sibling.isOnLeft()) {
                            // left right
                            sibling.right!.color = parent.color;
                            this.rotateLeft(sibling);
                            this.rotateRight(parent);
                        } else {
                            // right right
                            sibling.right!.color = sibling.color;
                            sibling.color = parent.color;
                            this.rotateLeft(parent);
                        }
                    }
                    parent.color = 1;
                } else {
                    // 2 black children
                    sibling.color = 0;
                    if (parent.color === 1) this.fixDoubleBlack(parent);
                    else parent.color = 1;
                }
            }
        }
    }

    insert(data: T): boolean {
        // search for a position to insert
        let parent = this.root;
        while (parent) {
            if (this.lt(data, parent.data)) {
                if (!parent.left) break;
                else parent = parent.left;
            } else if (this.lt(parent.data, data)) {
                if (!parent.right) break;
                else parent = parent.right;
            } else break;
        }

        // insert node into parent
        const node = new RBTreeNode(data);
        if (!parent) this.root = node;
        else if (this.lt(node.data, parent.data)) parent.left = node;
        else if (this.lt(parent.data, node.data)) parent.right = node;
        else {
            parent.count++;
            return false;
        }
        node.parent = parent;
        this.fixAfterInsert(node);
        return true;
    }

    search(predicate: (val: T) => boolean, direction: 'left' | 'right'): T | undefined {
        let p = this.root;
        let result = null;
        while (p) {
            if (predicate(p.data)) {
                result = p;
                p = p[direction];
            } else {
                p = p[direction === 'left' ? 'right' : 'left'];
            }
        }
        return result?.data;
    }

    find(data: T): RBTreeNode<T> | null {
        let p = this.root;
        while (p) {
            if (this.lt(data, p.data)) {
                p = p.left;
            } else if (this.lt(p.data, data)) {
                p = p.right;
            } else break;
        }
        return p ?? null;
    }

    count(data: T): number {
        const node = this.find(data);
        return node ? node.count : 0;
    }

    *inOrder(root: RBTreeNode<T> = this.root!): Generator<T, undefined, void> {
        if (!root) return;
        for (const v of this.inOrder(root.left!)) yield v;
        yield root.data;
        for (const v of this.inOrder(root.right!)) yield v;
    }

    *reverseInOrder(root: RBTreeNode<T> = this.root!): Generator<T, undefined, void> {
        if (!root) return;
        for (const v of this.reverseInOrder(root.right!)) yield v;
        yield root.data;
        for (const v of this.reverseInOrder(root.left!)) yield v;
    }
}

class TreeMap<K = number, V = unknown> {
    _size: number;
    tree: RBTree<K>;
    map: Map<K, V> = new Map();
    compare: Compare<K>;
    constructor(
        collection: Array<[K, V]> | Compare<K> = [],
        compare: Compare<K> = (l: K, r: K) => (l < r ? -1 : l > r ? 1 : 0),
    ) {
        if (typeof collection === 'function') {
            compare = collection;
            collection = [];
        }
        this._size = 0;
        this.compare = compare;
        this.tree = new RBTree(compare);
        for (const [key, val] of collection) this.set(key, val);
    }

    size(): number {
        return this._size;
    }

    has(key: K): boolean {
        return !!this.tree.find(key);
    }

    get(key: K): V | undefined {
        return this.map.get(key);
    }

    set(key: K, val: V): boolean {
        const successful = this.tree.insert(key);
        this._size += successful ? 1 : 0;
        this.map.set(key, val);
        return successful;
    }

    delete(key: K): boolean {
        const deleted = this.tree.deleteAll(key);
        this._size -= deleted ? 1 : 0;
        return deleted;
    }

    ceil(target: K): [K, V] | undefined {
        return this.toKeyValue(this.tree.search(key => this.compare(key, target) >= 0, 'left'));
    }

    floor(target: K): [K, V] | undefined {
        return this.toKeyValue(this.tree.search(key => this.compare(key, target) <= 0, 'right'));
    }

    higher(target: K): [K, V] | undefined {
        return this.toKeyValue(this.tree.search(key => this.compare(key, target) > 0, 'left'));
    }

    lower(target: K): [K, V] | undefined {
        return this.toKeyValue(this.tree.search(key => this.compare(key, target) < 0, 'right'));
    }

    first(): [K, V] | undefined {
        return this.toKeyValue(this.tree.inOrder().next().value);
    }

    last(): [K, V] | undefined {
        return this.toKeyValue(this.tree.reverseInOrder().next().value);
    }

    shift(): [K, V] | undefined {
        const first = this.first();
        if (first === undefined) return undefined;
        this.delete(first[0]);
        return first;
    }

    pop(): [K, V] | undefined {
        const last = this.last();
        if (last === undefined) return undefined;
        this.delete(last[0]);
        return last;
    }

    toKeyValue(key: K): [K, V];
    toKeyValue(key: undefined): undefined;
    toKeyValue(key: K | undefined): [K, V] | undefined;
    toKeyValue(key: K | undefined): [K, V] | undefined {
        return key != null ? [key, this.map.get(key)!] : undefined;
    }

    *[Symbol.iterator](): Generator<[K, V], void, void> {
        for (const key of this.keys()) yield this.toKeyValue(key);
    }

    *keys(): Generator<K, void, void> {
        for (const key of this.tree.inOrder()) yield key;
    }

    *values(): Generator<V, undefined, void> {
        for (const key of this.keys()) yield this.map.get(key)!;
        return undefined;
    }

    *rkeys(): Generator<K, undefined, void> {
        for (const key of this.tree.reverseInOrder()) yield key;
        return undefined;
    }

    *rvalues(): Generator<V, undefined, void> {
        for (const key of this.rkeys()) yield this.map.get(key)!;
        return undefined;
    }
}