3205. Maximum Array Hopping Score I π ο
Descriptionο
Given an array nums
, you have to get the maximum score starting from index 0 and hopping until you reach the last element of the array.
In each hop, you can jump from index i
to an index j > i
, and you get a score of (j - i) * nums[j]
.
Return the maximum score you can get.
Example 1:
Input: nums = [1,5,8]
Output: 16
Explanation:
There are two possible ways to reach the last element:
0 -> 1 -> 2
with a score of(1 - 0) * 5 + (2 - 1) * 8 = 13
.0 -> 2
with a score of(2 - 0) * 8 = 16
.
Example 2:
Input: nums = [4,5,2,8,9,1,3]
Output: 42
Explanation:
We can do the hopping 0 -> 4 -> 6
with a score of (4 - 0) * 9 + (6 - 4) * 3 = 42
.
Constraints:
2 <= nums.length <= 103
1 <= nums[i] <= 105
Solutionsο
Solution 1: Memoization Searchο
We design a function $\textit{dfs}(i)$, which represents the maximum score that can be obtained starting from index $i$. Therefore, the answer is $\textit{dfs}(0)$.
The execution process of the function $\textit{dfs}(i)$ is as follows:
We enumerate the next jump position $j$. Thus, the score that can be obtained starting from index $i$ is $(j - i) \times \textit{nums}[j]$, plus the maximum score that can be obtained starting from index $j$, making the total score $(j - i) \times \textit{nums}[j] + \textit{dfs}(j)$. We enumerate all possible $j$ and take the maximum score.
To avoid redundant calculations, we use memoization search. We save the calculated value of $\textit{dfs}(i)$, so it can be directly returned next time.
The time complexity is $O(n^2)$, and the space complexity is $O(n)$. Here, $n$ is the length of the array.
Python3ο
class Solution:
def maxScore(self, nums: List[int]) -> int:
@cache
def dfs(i: int) -> int:
return max(
[(j - i) * nums[j] + dfs(j) for j in range(i + 1, len(nums))] or [0]
)
return dfs(0)
Javaο
class Solution {
private Integer[] f;
private int[] nums;
private int n;
public int maxScore(int[] nums) {
n = nums.length;
f = new Integer[n];
this.nums = nums;
return dfs(0);
}
private int dfs(int i) {
if (f[i] != null) {
return f[i];
}
f[i] = 0;
for (int j = i + 1; j < n; ++j) {
f[i] = Math.max(f[i], (j - i) * nums[j] + dfs(j));
}
return f[i];
}
}
C++ο
class Solution {
public:
int maxScore(vector<int>& nums) {
int n = nums.size();
vector<int> f(n);
auto dfs = [&](this auto&& dfs, int i) -> int {
if (f[i]) {
return f[i];
}
for (int j = i + 1; j < n; ++j) {
f[i] = max(f[i], (j - i) * nums[j] + dfs(j));
}
return f[i];
};
return dfs(0);
}
};
Goο
func maxScore(nums []int) int {
n := len(nums)
f := make([]int, n)
var dfs func(int) int
dfs = func(i int) int {
if f[i] > 0 {
return f[i]
}
for j := i + 1; j < n; j++ {
f[i] = max(f[i], (j-i)*nums[j]+dfs(j))
}
return f[i]
}
return dfs(0)
}
TypeScriptο
function maxScore(nums: number[]): number {
const n = nums.length;
const f: number[] = Array(n).fill(0);
const dfs = (i: number): number => {
if (f[i]) {
return f[i];
}
for (let j = i + 1; j < n; ++j) {
f[i] = Math.max(f[i], (j - i) * nums[j] + dfs(j));
}
return f[i];
};
return dfs(0);
}
Solution 2: Dynamic Programmingο
We can transform the memoization search from Solution 1 into dynamic programming.
Define $f[j]$ as the maximum score that can be obtained starting from index $0$ and ending at index $j$. Therefore, the answer is $f[n - 1]$.
The state transition equation is:
$$ f[j] = \max_{0 \leq i < j} { f[i] + (j - i) \times \textit{nums}[j] } $$
The time complexity is $O(n^2)$, and the space complexity is $O(n)$. Here, $n$ is the length of the array.
Python3ο
class Solution:
def maxScore(self, nums: List[int]) -> int:
n = len(nums)
f = [0] * n
for j in range(1, n):
for i in range(j):
f[j] = max(f[j], f[i] + (j - i) * nums[j])
return f[n - 1]
Javaο
class Solution {
public int maxScore(int[] nums) {
int n = nums.length;
int[] f = new int[n];
for (int j = 1; j < n; ++j) {
for (int i = 0; i < j; ++i) {
f[j] = Math.max(f[j], f[i] + (j - i) * nums[j]);
}
}
return f[n - 1];
}
}
C++ο
class Solution {
public:
int maxScore(vector<int>& nums) {
int n = nums.size();
vector<int> f(n);
for (int j = 1; j < n; ++j) {
for (int i = 0; i < j; ++i) {
f[j] = max(f[j], f[i] + (j - i) * nums[j]);
}
}
return f[n - 1];
}
};
Goο
func maxScore(nums []int) int {
n := len(nums)
f := make([]int, n)
for j := 1; j < n; j++ {
for i := 0; i < j; i++ {
f[j] = max(f[j], f[i]+(j-i)*nums[j])
}
}
return f[n-1]
}
TypeScriptο
function maxScore(nums: number[]): number {
const n = nums.length;
const f: number[] = Array(n).fill(0);
for (let j = 1; j < n; ++j) {
for (let i = 0; i < j; ++i) {
f[j] = Math.max(f[j], f[i] + (j - i) * nums[j]);
}
}
return f[n - 1];
}
Solution 3: Monotonic Stackο
We observe that for the current position $i$, we should jump to the next position $j$ with the maximum value to obtain the maximum score.
Therefore, we traverse the array $\textit{nums}$, maintaining a stack $\textit{stk}$ that is monotonically decreasing from the bottom to the top of the stack. For the current position $i$ being traversed, if the value corresponding to the top element of the stack is less than or equal to $\textit{nums}[i]$, we continuously pop the top element of the stack until the stack is empty or the value corresponding to the top element of the stack is greater than $\textit{nums}[i]$, and then push $i$ into the stack.
Next, we initialize the answer $\textit{ans}$ and the current position $i = 0$, traverse the elements in the stack, each time taking out the top element $j$, updating the answer $\textit{ans} += \textit{nums}[j] \times (j - i)$, and then updating $i = j$.
Finally, return the answer $\textit{ans}$.
The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the length of the array.
Python3ο
class Solution:
def maxScore(self, nums: List[int]) -> int:
stk = []
for i, x in enumerate(nums):
while stk and nums[stk[-1]] <= x:
stk.pop()
stk.append(i)
ans = i = 0
for j in stk:
ans += nums[j] * (j - i)
i = j
return ans
Javaο
class Solution {
public int maxScore(int[] nums) {
Deque<Integer> stk = new ArrayDeque<>();
for (int i = 0; i < nums.length; ++i) {
while (!stk.isEmpty() && nums[stk.peek()] <= nums[i]) {
stk.pop();
}
stk.push(i);
}
int ans = 0, i = 0;
while (!stk.isEmpty()) {
int j = stk.pollLast();
ans += (j - i) * nums[j];
i = j;
}
return ans;
}
}
C++ο
class Solution {
public:
int maxScore(vector<int>& nums) {
vector<int> stk;
for (int i = 0; i < nums.size(); ++i) {
while (stk.size() && nums[stk.back()] <= nums[i]) {
stk.pop_back();
}
stk.push_back(i);
}
int ans = 0, i = 0;
for (int j : stk) {
ans += (j - i) * nums[j];
i = j;
}
return ans;
}
};
Goο
func maxScore(nums []int) (ans int) {
stk := []int{}
for i, x := range nums {
for len(stk) > 0 && nums[stk[len(stk)-1]] <= x {
stk = stk[:len(stk)-1]
}
stk = append(stk, i)
}
i := 0
for _, j := range stk {
ans += (j - i) * nums[j]
i = j
}
return
}
TypeScriptο
function maxScore(nums: number[]): number {
const stk: number[] = [];
for (let i = 0; i < nums.length; ++i) {
while (stk.length && nums[stk.at(-1)!] <= nums[i]) {
stk.pop();
}
stk.push(i);
}
let ans = 0;
let i = 0;
for (const j of stk) {
ans += (j - i) * nums[j];
i = j;
}
return ans;
}