3205. Maximum Array Hopping Score I πŸ”’ 

δΈ­ζ–‡ζ–‡ζ‘£

Description

Given an array nums, you have to get the maximum score starting from index 0 and hopping until you reach the last element of the array.

In each hop, you can jump from index i to an index j > i, and you get a score of (j - i) * nums[j].

Return the maximum score you can get.

 

Example 1:

Input: nums = [1,5,8]

Output: 16

Explanation:

There are two possible ways to reach the last element:

  • 0 -> 1 -> 2 with a score of (1 - 0) * 5 + (2 - 1) * 8 = 13.
  • 0 -> 2 with a score of (2 - 0) * 8 = 16.

Example 2:

Input: nums = [4,5,2,8,9,1,3]

Output: 42

Explanation:

We can do the hopping 0 -> 4 -> 6 with a score of (4 - 0) * 9 + (6 - 4) * 3 = 42.

 

Constraints:

  • 2 <= nums.length <= 103
  • 1 <= nums[i] <= 105

Solutions

Solution 2: Dynamic Programming

We can transform the memoization search from Solution 1 into dynamic programming.

Define $f[j]$ as the maximum score that can be obtained starting from index $0$ and ending at index $j$. Therefore, the answer is $f[n - 1]$.

The state transition equation is:

$$ f[j] = \max_{0 \leq i < j} { f[i] + (j - i) \times \textit{nums}[j] } $$

The time complexity is $O(n^2)$, and the space complexity is $O(n)$. Here, $n$ is the length of the array.

Python3

class Solution:
    def maxScore(self, nums: List[int]) -> int:
        n = len(nums)
        f = [0] * n
        for j in range(1, n):
            for i in range(j):
                f[j] = max(f[j], f[i] + (j - i) * nums[j])
        return f[n - 1]

Java

class Solution {
    public int maxScore(int[] nums) {
        int n = nums.length;
        int[] f = new int[n];
        for (int j = 1; j < n; ++j) {
            for (int i = 0; i < j; ++i) {
                f[j] = Math.max(f[j], f[i] + (j - i) * nums[j]);
            }
        }
        return f[n - 1];
    }
}

C++

class Solution {
public:
    int maxScore(vector<int>& nums) {
        int n = nums.size();
        vector<int> f(n);
        for (int j = 1; j < n; ++j) {
            for (int i = 0; i < j; ++i) {
                f[j] = max(f[j], f[i] + (j - i) * nums[j]);
            }
        }
        return f[n - 1];
    }
};

Go

func maxScore(nums []int) int {
	n := len(nums)
	f := make([]int, n)
	for j := 1; j < n; j++ {
		for i := 0; i < j; i++ {
			f[j] = max(f[j], f[i]+(j-i)*nums[j])
		}
	}
	return f[n-1]
}

TypeScript

function maxScore(nums: number[]): number {
    const n = nums.length;
    const f: number[] = Array(n).fill(0);
    for (let j = 1; j < n; ++j) {
        for (let i = 0; i < j; ++i) {
            f[j] = Math.max(f[j], f[i] + (j - i) * nums[j]);
        }
    }
    return f[n - 1];
}

Solution 3: Monotonic Stack

We observe that for the current position $i$, we should jump to the next position $j$ with the maximum value to obtain the maximum score.

Therefore, we traverse the array $\textit{nums}$, maintaining a stack $\textit{stk}$ that is monotonically decreasing from the bottom to the top of the stack. For the current position $i$ being traversed, if the value corresponding to the top element of the stack is less than or equal to $\textit{nums}[i]$, we continuously pop the top element of the stack until the stack is empty or the value corresponding to the top element of the stack is greater than $\textit{nums}[i]$, and then push $i$ into the stack.

Next, we initialize the answer $\textit{ans}$ and the current position $i = 0$, traverse the elements in the stack, each time taking out the top element $j$, updating the answer $\textit{ans} += \textit{nums}[j] \times (j - i)$, and then updating $i = j$.

Finally, return the answer $\textit{ans}$.

The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the length of the array.

Python3

class Solution:
    def maxScore(self, nums: List[int]) -> int:
        stk = []
        for i, x in enumerate(nums):
            while stk and nums[stk[-1]] <= x:
                stk.pop()
            stk.append(i)
        ans = i = 0
        for j in stk:
            ans += nums[j] * (j - i)
            i = j
        return ans

Java

class Solution {
    public int maxScore(int[] nums) {
        Deque<Integer> stk = new ArrayDeque<>();
        for (int i = 0; i < nums.length; ++i) {
            while (!stk.isEmpty() && nums[stk.peek()] <= nums[i]) {
                stk.pop();
            }
            stk.push(i);
        }
        int ans = 0, i = 0;
        while (!stk.isEmpty()) {
            int j = stk.pollLast();
            ans += (j - i) * nums[j];
            i = j;
        }
        return ans;
    }
}

C++

class Solution {
public:
    int maxScore(vector<int>& nums) {
        vector<int> stk;
        for (int i = 0; i < nums.size(); ++i) {
            while (stk.size() && nums[stk.back()] <= nums[i]) {
                stk.pop_back();
            }
            stk.push_back(i);
        }
        int ans = 0, i = 0;
        for (int j : stk) {
            ans += (j - i) * nums[j];
            i = j;
        }
        return ans;
    }
};

Go

func maxScore(nums []int) (ans int) {
	stk := []int{}
	for i, x := range nums {
		for len(stk) > 0 && nums[stk[len(stk)-1]] <= x {
			stk = stk[:len(stk)-1]
		}
		stk = append(stk, i)
	}
	i := 0
	for _, j := range stk {
		ans += (j - i) * nums[j]
		i = j
	}
	return
}

TypeScript

function maxScore(nums: number[]): number {
    const stk: number[] = [];
    for (let i = 0; i < nums.length; ++i) {
        while (stk.length && nums[stk.at(-1)!] <= nums[i]) {
            stk.pop();
        }
        stk.push(i);
    }
    let ans = 0;
    let i = 0;
    for (const j of stk) {
        ans += (j - i) * nums[j];
        i = j;
    }
    return ans;
}