3086. Minimum Moves to Pick K Ones
Description
You are given a binary array nums
of length n
, a positive integer k
and a non-negative integer maxChanges
.
Alice plays a game, where the goal is for Alice to pick up k
ones from nums
using the minimum number of moves. When the game starts, Alice picks up any index aliceIndex
in the range [0, n - 1]
and stands there. If nums[aliceIndex] == 1
, Alice picks up the one and nums[aliceIndex]
becomes 0
(this does not count as a move). After this, Alice can make any number of moves (including zero) where in each move Alice must perform exactly one of the following actions:
- Select any index
j != aliceIndex
such thatnums[j] == 0
and setnums[j] = 1
. This action can be performed at mostmaxChanges
times. - Select any two adjacent indices
x
andy
(|x - y| == 1
) such thatnums[x] == 1
,nums[y] == 0
, then swap their values (setnums[y] = 1
andnums[x] = 0
). Ify == aliceIndex
, Alice picks up the one after this move andnums[y]
becomes0
.
Return the minimum number of moves required by Alice to pick exactly k
ones.
Example 1:
Input: nums = [1,1,0,0,0,1,1,0,0,1], k = 3, maxChanges = 1
Output: 3
Explanation: Alice can pick up 3
ones in 3
moves, if Alice performs the following actions in each move when standing at aliceIndex == 1
:
- At the start of the game Alice picks up the one and
nums[1]
becomes0
.nums
becomes[1,0,0,0,0,1,1,0,0,1]
. - Select
j == 2
and perform an action of the first type.nums
becomes[1,0,1,0,0,1,1,0,0,1]
- Select
x == 2
andy == 1
, and perform an action of the second type.nums
becomes[1,1,0,0,0,1,1,0,0,1]
. Asy == aliceIndex
, Alice picks up the one andnums
becomes[1,0,0,0,0,1,1,0,0,1]
. - Select
x == 0
andy == 1
, and perform an action of the second type.nums
becomes[0,1,0,0,0,1,1,0,0,1]
. Asy == aliceIndex
, Alice picks up the one andnums
becomes[0,0,0,0,0,1,1,0,0,1]
.
Note that it may be possible for Alice to pick up 3
ones using some other sequence of 3
moves.
Example 2:
Input: nums = [0,0,0,0], k = 2, maxChanges = 3
Output: 4
Explanation: Alice can pick up 2
ones in 4
moves, if Alice performs the following actions in each move when standing at aliceIndex == 0
:
- Select
j == 1
and perform an action of the first type.nums
becomes[0,1,0,0]
. - Select
x == 1
andy == 0
, and perform an action of the second type.nums
becomes[1,0,0,0]
. Asy == aliceIndex
, Alice picks up the one andnums
becomes[0,0,0,0]
. - Select
j == 1
again and perform an action of the first type.nums
becomes[0,1,0,0]
. - Select
x == 1
andy == 0
again, and perform an action of the second type.nums
becomes[1,0,0,0]
. Asy == aliceIndex
, Alice picks up the one andnums
becomes[0,0,0,0]
.
Constraints:
2 <= n <= 105
0 <= nums[i] <= 1
1 <= k <= 105
0 <= maxChanges <= 105
maxChanges + sum(nums) >= k
Solutions
Solution 1: Greedy + Prefix Sum + Binary Search
We consider enumerating Alice's standing position $i$. For each $i$, we follow the strategy below:
First, if the number at position $i$ is $1$, we can directly pick up a $1$ without needing any moves.
Then, we pick up the number $1$ from both sides of position $i$, which is action $2$, i.e., move the $1$ from position $i-1$ to position $i$, then pick it up; move the $1$ from position $i+1$ to position $i$, then pick it up. Each pick up of a $1$ requires $1$ move.
Next, we maximize the conversion of $0$s at positions $i-1$ or $i+1$ to $1$s using action $1$, then move them to position $i$ using action $2$ to pick them up. This continues until the number of $1$s picked up reaches $k$ or the number of times action $1$ is used reaches $\textit{maxChanges}$. Assuming the number of times action $1$ is used is $c$, then a total of $2c$ moves are needed.
After utilizing action $1$, if the number of $1$s picked up has not reached $k$, we need to continue considering moving $1$s to position $i$ from the intervals $[1,..i-2]$ and $[i+2,..n]$ using action $2$ to pick them up. We can use binary search to determine the size of this interval so that the number of $1$s picked up reaches $k$. Specifically, we binary search for an interval size $d$, then within the intervals $[i-d,..i-2]$ and $[i+2,..i+d]$, we perform action $2$ to move $1$s to position $i$ for pickup. If the number of $1$s picked up reaches $k$, we update the answer.
The time complexity is $O(n \times \log n)$, and the space complexity is $O(n)$. Here, $n$ is the length of the array $\textit{nums}$.
Python3
class Solution:
def minimumMoves(self, nums: List[int], k: int, maxChanges: int) -> int:
n = len(nums)
cnt = [0] * (n + 1)
s = [0] * (n + 1)
for i, x in enumerate(nums, 1):
cnt[i] = cnt[i - 1] + x
s[i] = s[i - 1] + i * x
ans = inf
max = lambda x, y: x if x > y else y
min = lambda x, y: x if x < y else y
for i, x in enumerate(nums, 1):
t = 0
need = k - x
for j in (i - 1, i + 1):
if need > 0 and 1 <= j <= n and nums[j - 1] == 1:
need -= 1
t += 1
c = min(need, maxChanges)
need -= c
t += c * 2
if need <= 0:
ans = min(ans, t)
continue
l, r = 2, max(i - 1, n - i)
while l <= r:
mid = (l + r) >> 1
l1, r1 = max(1, i - mid), max(0, i - 2)
l2, r2 = min(n + 1, i + 2), min(n, i + mid)
c1 = cnt[r1] - cnt[l1 - 1]
c2 = cnt[r2] - cnt[l2 - 1]
if c1 + c2 >= need:
t1 = c1 * i - (s[r1] - s[l1 - 1])
t2 = s[r2] - s[l2 - 1] - c2 * i
ans = min(ans, t + t1 + t2)
r = mid - 1
else:
l = mid + 1
return ans
Java
class Solution {
public long minimumMoves(int[] nums, int k, int maxChanges) {
int n = nums.length;
int[] cnt = new int[n + 1];
long[] s = new long[n + 1];
for (int i = 1; i <= n; ++i) {
cnt[i] = cnt[i - 1] + nums[i - 1];
s[i] = s[i - 1] + i * nums[i - 1];
}
long ans = Long.MAX_VALUE;
for (int i = 1; i <= n; ++i) {
long t = 0;
int need = k - nums[i - 1];
for (int j = i - 1; j <= i + 1; j += 2) {
if (need > 0 && 1 <= j && j <= n && nums[j - 1] == 1) {
--need;
++t;
}
}
int c = Math.min(need, maxChanges);
need -= c;
t += c * 2;
if (need <= 0) {
ans = Math.min(ans, t);
continue;
}
int l = 2, r = Math.max(i - 1, n - i);
while (l <= r) {
int mid = (l + r) >> 1;
int l1 = Math.max(1, i - mid), r1 = Math.max(0, i - 2);
int l2 = Math.min(n + 1, i + 2), r2 = Math.min(n, i + mid);
int c1 = cnt[r1] - cnt[l1 - 1];
int c2 = cnt[r2] - cnt[l2 - 1];
if (c1 + c2 >= need) {
long t1 = 1L * c1 * i - (s[r1] - s[l1 - 1]);
long t2 = s[r2] - s[l2 - 1] - 1L * c2 * i;
ans = Math.min(ans, t + t1 + t2);
r = mid - 1;
} else {
l = mid + 1;
}
}
}
return ans;
}
}
C++
class Solution {
public:
long long minimumMoves(vector<int>& nums, int k, int maxChanges) {
int n = nums.size();
vector<int> cnt(n + 1, 0);
vector<long long> s(n + 1, 0);
for (int i = 1; i <= n; ++i) {
cnt[i] = cnt[i - 1] + nums[i - 1];
s[i] = s[i - 1] + 1LL * i * nums[i - 1];
}
long long ans = LLONG_MAX;
for (int i = 1; i <= n; ++i) {
long long t = 0;
int need = k - nums[i - 1];
for (int j = i - 1; j <= i + 1; j += 2) {
if (need > 0 && 1 <= j && j <= n && nums[j - 1] == 1) {
--need;
++t;
}
}
int c = min(need, maxChanges);
need -= c;
t += c * 2;
if (need <= 0) {
ans = min(ans, t);
continue;
}
int l = 2, r = max(i - 1, n - i);
while (l <= r) {
int mid = (l + r) / 2;
int l1 = max(1, i - mid), r1 = max(0, i - 2);
int l2 = min(n + 1, i + 2), r2 = min(n, i + mid);
int c1 = cnt[r1] - cnt[l1 - 1];
int c2 = cnt[r2] - cnt[l2 - 1];
if (c1 + c2 >= need) {
long long t1 = 1LL * c1 * i - (s[r1] - s[l1 - 1]);
long long t2 = s[r2] - s[l2 - 1] - 1LL * c2 * i;
ans = min(ans, t + t1 + t2);
r = mid - 1;
} else {
l = mid + 1;
}
}
}
return ans;
}
};
Go
func minimumMoves(nums []int, k int, maxChanges int) int64 {
n := len(nums)
cnt := make([]int, n+1)
s := make([]int, n+1)
for i := 1; i <= n; i++ {
cnt[i] = cnt[i-1] + nums[i-1]
s[i] = s[i-1] + i*nums[i-1]
}
ans := math.MaxInt64
for i := 1; i <= n; i++ {
t := 0
need := k - nums[i-1]
for _, j := range []int{i - 1, i + 1} {
if need > 0 && 1 <= j && j <= n && nums[j-1] == 1 {
need--
t++
}
}
c := min(need, maxChanges)
need -= c
t += c * 2
if need <= 0 {
ans = min(ans, t)
continue
}
l, r := 2, max(i-1, n-i)
for l <= r {
mid := (l + r) >> 1
l1, r1 := max(1, i-mid), max(0, i-2)
l2, r2 := min(n+1, i+2), min(n, i+mid)
c1 := cnt[r1] - cnt[l1-1]
c2 := cnt[r2] - cnt[l2-1]
if c1+c2 >= need {
t1 := c1*i - (s[r1] - s[l1-1])
t2 := s[r2] - s[l2-1] - c2*i
ans = min(ans, t+t1+t2)
r = mid - 1
} else {
l = mid + 1
}
}
}
return int64(ans)
}
TypeScript
function minimumMoves(nums: number[], k: number, maxChanges: number): number {
const n = nums.length;
const cnt = Array(n + 1).fill(0);
const s = Array(n + 1).fill(0);
for (let i = 1; i <= n; i++) {
cnt[i] = cnt[i - 1] + nums[i - 1];
s[i] = s[i - 1] + i * nums[i - 1];
}
let ans = Infinity;
for (let i = 1; i <= n; i++) {
let t = 0;
let need = k - nums[i - 1];
for (let j of [i - 1, i + 1]) {
if (need > 0 && 1 <= j && j <= n && nums[j - 1] === 1) {
need--;
t++;
}
}
const c = Math.min(need, maxChanges);
need -= c;
t += c * 2;
if (need <= 0) {
ans = Math.min(ans, t);
continue;
}
let l = 2,
r = Math.max(i - 1, n - i);
while (l <= r) {
const mid = (l + r) >> 1;
const [l1, r1] = [Math.max(1, i - mid), Math.max(0, i - 2)];
const [l2, r2] = [Math.min(n + 1, i + 2), Math.min(n, i + mid)];
const c1 = cnt[r1] - cnt[l1 - 1];
const c2 = cnt[r2] - cnt[l2 - 1];
if (c1 + c2 >= need) {
const t1 = c1 * i - (s[r1] - s[l1 - 1]);
const t2 = s[r2] - s[l2 - 1] - c2 * i;
ans = Math.min(ans, t + t1 + t2);
r = mid - 1;
} else {
l = mid + 1;
}
}
}
return ans;
}