2489. Number of Substrings With Fixed Ratio 🔒
Description
You are given a binary string s
, and two integers num1
and num2
. num1
and num2
are coprime numbers.
A ratio substring is a substring of s where the ratio between the number of 0
's and the number of 1
's in the substring is exactly num1 : num2
.
- For example, if
num1 = 2
andnum2 = 3
, then"01011"
and"1110000111"
are ratio substrings, while"11000"
is not.
Return the number of non-empty ratio substrings of s
.
Note that:
- A substring is a contiguous sequence of characters within a string.
- Two values
x
andy
are coprime ifgcd(x, y) == 1
wheregcd(x, y)
is the greatest common divisor ofx
andy
.
Example 1:
Input: s = "0110011", num1 = 1, num2 = 2 Output: 4 Explanation: There exist 4 non-empty ratio substrings. - The substring s[0..2]: "0110011". It contains one 0 and two 1's. The ratio is 1 : 2. - The substring s[1..4]: "0110011". It contains one 0 and two 1's. The ratio is 1 : 2. - The substring s[4..6]: "0110011". It contains one 0 and two 1's. The ratio is 1 : 2. - The substring s[1..6]: "0110011". It contains two 0's and four 1's. The ratio is 2 : 4 == 1 : 2. It can be shown that there are no more ratio substrings.
Example 2:
Input: s = "10101", num1 = 3, num2 = 1 Output: 0 Explanation: There is no ratio substrings of s. We return 0.
Constraints:
1 <= s.length <= 105
1 <= num1, num2 <= s.length
num1
andnum2
are coprime integers.
Solutions
Solution 1: Prefix Sum + Counting
We use $one[i]$ to represent the number of $1$s in the substring $s[0,..i]$, and $zero[i]$ to represent the number of $0$s in the substring $s[0,..i]$. A substring meets the condition if
$$ \frac{zero[j] - zero[i]}{one[j] - one[i]} = \frac{num1}{num2} $$
where $i < j$. We can transform the above equation into
$$ one[j] \times num1 - zero[j] \times num2 = one[i] \times num1 - zero[i] \times num2 $$
When we iterate to index $j$, we only need to count how many indices $i$ satisfy the above equation. Therefore, we can use a hash table to record the number of occurrences of $one[i] \times num1 - zero[i] \times num2$, and when we iterate to index $j$, we only need to count the number of occurrences of $one[j] \times num1 - zero[j] \times num2$.
The hash table initially only has one key-value pair $(0, 1)$.
The time complexity is $O(n)$, and the space complexity is $O(n)$. Where $n$ is the length of the string $s$.
Python3
class Solution:
def fixedRatio(self, s: str, num1: int, num2: int) -> int:
n0 = n1 = 0
ans = 0
cnt = Counter({0: 1})
for c in s:
n0 += c == '0'
n1 += c == '1'
x = n1 * num1 - n0 * num2
ans += cnt[x]
cnt[x] += 1
return ans
Java
class Solution {
public long fixedRatio(String s, int num1, int num2) {
long n0 = 0, n1 = 0;
long ans = 0;
Map<Long, Long> cnt = new HashMap<>();
cnt.put(0L, 1L);
for (char c : s.toCharArray()) {
n0 += c == '0' ? 1 : 0;
n1 += c == '1' ? 1 : 0;
long x = n1 * num1 - n0 * num2;
ans += cnt.getOrDefault(x, 0L);
cnt.put(x, cnt.getOrDefault(x, 0L) + 1);
}
return ans;
}
}
C++
using ll = long long;
class Solution {
public:
long long fixedRatio(string s, int num1, int num2) {
ll n0 = 0, n1 = 0;
ll ans = 0;
unordered_map<ll, ll> cnt;
cnt[0] = 1;
for (char& c : s) {
n0 += c == '0';
n1 += c == '1';
ll x = n1 * num1 - n0 * num2;
ans += cnt[x];
++cnt[x];
}
return ans;
}
};
Go
func fixedRatio(s string, num1 int, num2 int) int64 {
n0, n1 := 0, 0
ans := 0
cnt := map[int]int{0: 1}
for _, c := range s {
if c == '0' {
n0++
} else {
n1++
}
x := n1*num1 - n0*num2
ans += cnt[x]
cnt[x]++
}
return int64(ans)
}