1567. Maximum Length of Subarray With Positive Product
Description
Given an array of integers nums
, find the maximum length of a subarray where the product of all its elements is positive.
A subarray of an array is a consecutive sequence of zero or more values taken out of that array.
Return the maximum length of a subarray with positive product.
Example 1:
Input: nums = [1,-2,-3,4] Output: 4 Explanation: The array nums already has a positive product of 24.
Example 2:
Input: nums = [0,1,-2,-3,-4] Output: 3 Explanation: The longest subarray with positive product is [1,-2,-3] which has a product of 6. Notice that we cannot include 0 in the subarray since that'll make the product 0 which is not positive.
Example 3:
Input: nums = [-1,-2,-3,0,1] Output: 2 Explanation: The longest subarray with positive product is [-1,-2] or [-2,-3].
Constraints:
1 <= nums.length <= 105
-109 <= nums[i] <= 109
Solutions
Solution 1: Dynamic Programming
We define two arrays $f$ and $g$ of length $n$, where $f[i]$ represents the length of the longest subarray ending at $\textit{nums}[i]$ with a positive product, and $g[i]$ represents the length of the longest subarray ending at $\textit{nums}[i]$ with a negative product.
Initially, if $\textit{nums}[0] > 0$, then $f[0] = 1$, otherwise $f[0] = 0$; if $\textit{nums}[0] < 0$, then $g[0] = 1$, otherwise $g[0] = 0$. We initialize the answer $ans = f[0]$.
Next, we iterate through the array $\textit{nums}$ starting from $i = 1$. For each $i$, we have the following cases:
If $\textit{nums}[i] > 0$, then $f[i]$ can be transferred from $f[i - 1]$, i.e., $f[i] = f[i - 1] + 1$, and the value of $g[i]$ depends on whether $g[i - 1]$ is $0$. If $g[i - 1] = 0$, then $g[i] = 0$, otherwise $g[i] = g[i - 1] + 1$;
If $\textit{nums}[i] < 0$, then the value of $f[i]$ depends on whether $g[i - 1]$ is $0$. If $g[i - 1] = 0$, then $f[i] = 0$, otherwise $f[i] = g[i - 1] + 1$, and $g[i]$ can be transferred from $f[i - 1]$, i.e., $g[i] = f[i - 1] + 1$.
Then, we update the answer $ans = \max(ans, f[i])$.
After the iteration, we return the answer $ans$.
The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the length of the array $\textit{nums}$.
Python3
class Solution:
def getMaxLen(self, nums: List[int]) -> int:
n = len(nums)
f = [0] * n
g = [0] * n
f[0] = int(nums[0] > 0)
g[0] = int(nums[0] < 0)
ans = f[0]
for i in range(1, n):
if nums[i] > 0:
f[i] = f[i - 1] + 1
g[i] = 0 if g[i - 1] == 0 else g[i - 1] + 1
elif nums[i] < 0:
f[i] = 0 if g[i - 1] == 0 else g[i - 1] + 1
g[i] = f[i - 1] + 1
ans = max(ans, f[i])
return ans
Java
class Solution {
public int getMaxLen(int[] nums) {
int n = nums.length;
int[] f = new int[n];
int[] g = new int[n];
f[0] = nums[0] > 0 ? 1 : 0;
g[0] = nums[0] < 0 ? 1 : 0;
int ans = f[0];
for (int i = 1; i < n; ++i) {
if (nums[i] > 0) {
f[i] = f[i - 1] + 1;
g[i] = g[i - 1] > 0 ? g[i - 1] + 1 : 0;
} else if (nums[i] < 0) {
f[i] = g[i - 1] > 0 ? g[i - 1] + 1 : 0;
g[i] = f[i - 1] + 1;
}
ans = Math.max(ans, f[i]);
}
return ans;
}
}
C++
class Solution {
public:
int getMaxLen(vector<int>& nums) {
int n = nums.size();
vector<int> f(n, 0), g(n, 0);
f[0] = nums[0] > 0 ? 1 : 0;
g[0] = nums[0] < 0 ? 1 : 0;
int ans = f[0];
for (int i = 1; i < n; ++i) {
if (nums[i] > 0) {
f[i] = f[i - 1] + 1;
g[i] = g[i - 1] > 0 ? g[i - 1] + 1 : 0;
} else if (nums[i] < 0) {
f[i] = g[i - 1] > 0 ? g[i - 1] + 1 : 0;
g[i] = f[i - 1] + 1;
}
ans = max(ans, f[i]);
}
return ans;
}
};
Go
func getMaxLen(nums []int) int {
n := len(nums)
f := make([]int, n)
g := make([]int, n)
if nums[0] > 0 {
f[0] = 1
}
if nums[0] < 0 {
g[0] = 1
}
ans := f[0]
for i := 1; i < n; i++ {
if nums[i] > 0 {
f[i] = f[i-1] + 1
if g[i-1] > 0 {
g[i] = g[i-1] + 1
} else {
g[i] = 0
}
} else if nums[i] < 0 {
if g[i-1] > 0 {
f[i] = g[i-1] + 1
} else {
f[i] = 0
}
g[i] = f[i-1] + 1
}
ans = max(ans, f[i])
}
return ans
}
TypeScript
function getMaxLen(nums: number[]): number {
const n = nums.length;
const f: number[] = Array(n).fill(0);
const g: number[] = Array(n).fill(0);
if (nums[0] > 0) {
f[0] = 1;
}
if (nums[0] < 0) {
g[0] = 1;
}
let ans = f[0];
for (let i = 1; i < n; i++) {
if (nums[i] > 0) {
f[i] = f[i - 1] + 1;
g[i] = g[i - 1] > 0 ? g[i - 1] + 1 : 0;
} else if (nums[i] < 0) {
f[i] = g[i - 1] > 0 ? g[i - 1] + 1 : 0;
g[i] = f[i - 1] + 1;
}
ans = Math.max(ans, f[i]);
}
return ans;
}
Solution 2: Dynamic Programming (Space Optimization)
We observe that for each $i$, the values of $f[i]$ and $g[i]$ only depend on $f[i - 1]$ and $g[i - 1]$. Therefore, we can use two variables $f$ and $g$ to record the values of $f[i - 1]$ and $g[i - 1]$, respectively, thus optimizing the space complexity to $O(1)$.
The time complexity is $O(n)$, where $n$ is the length of the array $\textit{nums}$. The space complexity is $O(1)$.
Python3
class Solution:
def getMaxLen(self, nums: List[int]) -> int:
n = len(nums)
f = int(nums[0] > 0)
g = int(nums[0] < 0)
ans = f
for i in range(1, n):
ff = gg = 0
if nums[i] > 0:
ff = f + 1
gg = 0 if g == 0 else g + 1
elif nums[i] < 0:
ff = 0 if g == 0 else g + 1
gg = f + 1
f, g = ff, gg
ans = max(ans, f)
return ans
Java
class Solution {
public int getMaxLen(int[] nums) {
int n = nums.length;
int f = nums[0] > 0 ? 1 : 0;
int g = nums[0] < 0 ? 1 : 0;
int ans = f;
for (int i = 1; i < n; i++) {
int ff = 0, gg = 0;
if (nums[i] > 0) {
ff = f + 1;
gg = g == 0 ? 0 : g + 1;
} else if (nums[i] < 0) {
ff = g == 0 ? 0 : g + 1;
gg = f + 1;
}
f = ff;
g = gg;
ans = Math.max(ans, f);
}
return ans;
}
}
C++
class Solution {
public:
int getMaxLen(vector<int>& nums) {
int n = nums.size();
int f = nums[0] > 0 ? 1 : 0;
int g = nums[0] < 0 ? 1 : 0;
int ans = f;
for (int i = 1; i < n; i++) {
int ff = 0, gg = 0;
if (nums[i] > 0) {
ff = f + 1;
gg = g == 0 ? 0 : g + 1;
} else if (nums[i] < 0) {
ff = g == 0 ? 0 : g + 1;
gg = f + 1;
}
f = ff;
g = gg;
ans = max(ans, f);
}
return ans;
}
};
Go
func getMaxLen(nums []int) int {
n := len(nums)
var f, g int
if nums[0] > 0 {
f = 1
} else if nums[0] < 0 {
g = 1
}
ans := f
for i := 1; i < n; i++ {
ff, gg := 0, 0
if nums[i] > 0 {
ff = f + 1
gg = 0
if g > 0 {
gg = g + 1
}
} else if nums[i] < 0 {
ff = 0
if g > 0 {
ff = g + 1
}
gg = f + 1
}
f, g = ff, gg
ans = max(ans, f)
}
return ans
}
TypeScript
function getMaxLen(nums: number[]): number {
const n = nums.length;
let [f, g] = [0, 0];
if (nums[0] > 0) {
f = 1;
} else if (nums[0] < 0) {
g = 1;
}
let ans = f;
for (let i = 1; i < n; i++) {
let [ff, gg] = [0, 0];
if (nums[i] > 0) {
ff = f + 1;
gg = g > 0 ? g + 1 : 0;
} else if (nums[i] < 0) {
ff = g > 0 ? g + 1 : 0;
gg = f + 1;
}
[f, g] = [ff, gg];
ans = Math.max(ans, f);
}
return ans;
}