572. 另一棵树的子树
题目描述
给你两棵二叉树 root
和 subRoot
。检验 root
中是否包含和 subRoot
具有相同结构和节点值的子树。如果存在,返回 true
;否则,返回 false
。
二叉树 tree
的一棵子树包括 tree
的某个节点和这个节点的所有后代节点。tree
也可以看做它自身的一棵子树。
示例 1:

输入:root = [3,4,5,1,2], subRoot = [4,1,2] 输出:true
示例 2:

输入:root = [3,4,5,1,2,null,null,null,null,0], subRoot = [4,1,2] 输出:false
提示:
root
树上的节点数量范围是[1, 2000]
subRoot
树上的节点数量范围是[1, 1000]
-104 <= root.val <= 104
-104 <= subRoot.val <= 104
解法
方法一:DFS
我们定义一个辅助函数 $\textit{same}(p, q)$,用于判断以 $p$ 为根节点的树和以 $q$ 为根节点的树是否相等。如果两棵树的根节点的值相等,并且它们的左子树和右子树也分别相等,那么这两棵树是相等的。
在 $\textit{isSubtree}(\textit{root}, \textit{subRoot})$ 函数中,我们首先判断 $\textit{root}$ 是否为空,如果为空,则返回 $\text{false}$。否则,我们判断 $\textit{root}$ 和 $\textit{subRoot}$ 是否相等,如果相等,则返回 $\text{true}$。否则,我们递归地判断 $\textit{root}$ 的左子树和右子树是否包含 $\textit{subRoot}$。
时间复杂度 $O(n \times m)$,空间复杂度 $O(n)$。其中 $n$ 和 $m$ 分别是树 $root$ 和树 $subRoot$ 的节点个数。
Python3
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def isSubtree(self, root: Optional[TreeNode], subRoot: Optional[TreeNode]) -> bool:
def same(p: Optional[TreeNode], q: Optional[TreeNode]) -> bool:
if p is None or q is None:
return p is q
return p.val == q.val and same(p.left, q.left) and same(p.right, q.right)
if root is None:
return False
return (
same(root, subRoot)
or self.isSubtree(root.left, subRoot)
or self.isSubtree(root.right, subRoot)
)
Java
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public boolean isSubtree(TreeNode root, TreeNode subRoot) {
if (root == null) {
return false;
}
return same(root, subRoot) || isSubtree(root.left, subRoot)
|| isSubtree(root.right, subRoot);
}
private boolean same(TreeNode p, TreeNode q) {
if (p == null || q == null) {
return p == q;
}
return p.val == q.val && same(p.left, q.left) && same(p.right, q.right);
}
}
C++
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
bool isSubtree(TreeNode* root, TreeNode* subRoot) {
if (!root) {
return false;
}
return same(root, subRoot) || isSubtree(root->left, subRoot) || isSubtree(root->right, subRoot);
}
bool same(TreeNode* p, TreeNode* q) {
if (!p || !q) {
return p == q;
}
return p->val == q->val && same(p->left, q->left) && same(p->right, q->right);
}
};
Go
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func isSubtree(root *TreeNode, subRoot *TreeNode) bool {
var same func(p, q *TreeNode) bool
same = func(p, q *TreeNode) bool {
if p == nil || q == nil {
return p == q
}
return p.Val == q.Val && same(p.Left, q.Left) && same(p.Right, q.Right)
}
if root == nil {
return false
}
return same(root, subRoot) || isSubtree(root.Left, subRoot) || isSubtree(root.Right, subRoot)
}
TypeScript
/**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function isSubtree(root: TreeNode | null, subRoot: TreeNode | null): boolean {
const same = (p: TreeNode | null, q: TreeNode | null): boolean => {
if (!p || !q) {
return p === q;
}
return p.val === q.val && same(p.left, q.left) && same(p.right, q.right);
};
if (!root) {
return false;
}
return same(root, subRoot) || isSubtree(root.left, subRoot) || isSubtree(root.right, subRoot);
}
Rust
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std::cell::RefCell;
use std::rc::Rc;
impl Solution {
pub fn is_subtree(
root: Option<Rc<RefCell<TreeNode>>>,
sub_root: Option<Rc<RefCell<TreeNode>>>,
) -> bool {
if root.is_none() {
return false;
}
Self::same(&root, &sub_root)
|| Self::is_subtree(
root.as_ref().unwrap().borrow().left.clone(),
sub_root.clone(),
)
|| Self::is_subtree(
root.as_ref().unwrap().borrow().right.clone(),
sub_root.clone(),
)
}
fn same(p: &Option<Rc<RefCell<TreeNode>>>, q: &Option<Rc<RefCell<TreeNode>>>) -> bool {
match (p, q) {
(None, None) => true,
(Some(p), Some(q)) => {
let p = p.borrow();
let q = q.borrow();
p.val == q.val && Self::same(&p.left, &q.left) && Self::same(&p.right, &q.right)
}
_ => false,
}
}
}
JavaScript
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @param {TreeNode} subRoot
* @return {boolean}
*/
var isSubtree = function (root, subRoot) {
const same = (p, q) => {
if (!p || !q) {
return p === q;
}
return p.val === q.val && same(p.left, q.left) && same(p.right, q.right);
};
if (!root) {
return false;
}
return same(root, subRoot) || isSubtree(root.left, subRoot) || isSubtree(root.right, subRoot);
};