1942. The Number of the Smallest Unoccupied Chair
Description
There is a party where n
friends numbered from 0
to n - 1
are attending. There is an infinite number of chairs in this party that are numbered from 0
to infinity
. When a friend arrives at the party, they sit on the unoccupied chair with the smallest number.
- For example, if chairs
0
,1
, and5
are occupied when a friend comes, they will sit on chair number2
.
When a friend leaves the party, their chair becomes unoccupied at the moment they leave. If another friend arrives at that same moment, they can sit in that chair.
You are given a 0-indexed 2D integer array times
where times[i] = [arrivali, leavingi]
, indicating the arrival and leaving times of the ith
friend respectively, and an integer targetFriend
. All arrival times are distinct.
Return the chair number that the friend numbered targetFriend
will sit on.
Example 1:
Input: times = [[1,4],[2,3],[4,6]], targetFriend = 1 Output: 1 Explanation: - Friend 0 arrives at time 1 and sits on chair 0. - Friend 1 arrives at time 2 and sits on chair 1. - Friend 1 leaves at time 3 and chair 1 becomes empty. - Friend 0 leaves at time 4 and chair 0 becomes empty. - Friend 2 arrives at time 4 and sits on chair 0. Since friend 1 sat on chair 1, we return 1.
Example 2:
Input: times = [[3,10],[1,5],[2,6]], targetFriend = 0 Output: 2 Explanation: - Friend 1 arrives at time 1 and sits on chair 0. - Friend 2 arrives at time 2 and sits on chair 1. - Friend 0 arrives at time 3 and sits on chair 2. - Friend 1 leaves at time 5 and chair 0 becomes empty. - Friend 2 leaves at time 6 and chair 1 becomes empty. - Friend 0 leaves at time 10 and chair 2 becomes empty. Since friend 0 sat on chair 2, we return 2.
Constraints:
n == times.length
2 <= n <= 104
times[i].length == 2
1 <= arrivali < leavingi <= 105
0 <= targetFriend <= n - 1
- Each
arrivali
time is distinct.
Solutions
Solution 1: Priority Queue (Min-Heap)
First, we create a tuple for each friend consisting of their arrival time, leaving time, and index, then sort these tuples by arrival time.
We use a min-heap $\textit{idle}$ to store the currently available chair numbers. Initially, we add $0, 1, \ldots, n-1$ to $\textit{idle}$. We also use a min-heap $\textit{busy}$ to store tuples $(\textit{leaving}, \textit{chair})$, where $\textit{leaving}$ represents the leaving time and $\textit{chair}$ represents the chair number.
We iterate through each friend's arrival time, leaving time, and index. For each friend, we first remove all friends from $\textit{busy}$ whose leaving time is less than or equal to the current friend's arrival time, and add their chair numbers back to $\textit{idle}$. Then we pop a chair number from $\textit{idle}$, assign it to the current friend, and add $(\textit{leaving}, \textit{chair})$ to $\textit{busy}$. If the current friend's index is equal to $\textit{targetFriend}$, we return the assigned chair number.
The time complexity is $O(n \times \log n)$, and the space complexity is $O(n)$. Here, $n$ is the number of friends.
Python3
class Solution:
def smallestChair(self, times: List[List[int]], targetFriend: int) -> int:
n = len(times)
for i in range(n):
times[i].append(i)
times.sort()
idle = list(range(n))
heapify(idle)
busy = []
for arrival, leaving, i in times:
while busy and busy[0][0] <= arrival:
heappush(idle, heappop(busy)[1])
j = heappop(idle)
if i == targetFriend:
return j
heappush(busy, (leaving, j))
Java
class Solution {
public int smallestChair(int[][] times, int targetFriend) {
int n = times.length;
PriorityQueue<Integer> idle = new PriorityQueue<>();
PriorityQueue<int[]> busy = new PriorityQueue<>(Comparator.comparingInt(a -> a[0]));
for (int i = 0; i < n; ++i) {
times[i] = new int[] {times[i][0], times[i][1], i};
idle.offer(i);
}
Arrays.sort(times, Comparator.comparingInt(a -> a[0]));
for (var e : times) {
int arrival = e[0], leaving = e[1], i = e[2];
while (!busy.isEmpty() && busy.peek()[0] <= arrival) {
idle.offer(busy.poll()[1]);
}
int j = idle.poll();
if (i == targetFriend) {
return j;
}
busy.offer(new int[] {leaving, j});
}
return -1;
}
}
C++
class Solution {
public:
int smallestChair(vector<vector<int>>& times, int targetFriend) {
using pii = pair<int, int>;
priority_queue<pii, vector<pii>, greater<pii>> busy;
priority_queue<int, vector<int>, greater<int>> idle;
int n = times.size();
for (int i = 0; i < n; ++i) {
times[i].push_back(i);
idle.push(i);
}
ranges::sort(times);
for (const auto& e : times) {
int arrival = e[0], leaving = e[1], i = e[2];
while (!busy.empty() && busy.top().first <= arrival) {
idle.push(busy.top().second);
busy.pop();
}
int j = idle.top();
if (i == targetFriend) {
return j;
}
idle.pop();
busy.emplace(leaving, j);
}
return -1;
}
};
Go
func smallestChair(times [][]int, targetFriend int) int {
idle := hp{}
busy := hp2{}
for i := range times {
times[i] = append(times[i], i)
heap.Push(&idle, i)
}
sort.Slice(times, func(i, j int) bool { return times[i][0] < times[j][0] })
for _, e := range times {
arrival, leaving, i := e[0], e[1], e[2]
for len(busy) > 0 && busy[0].t <= arrival {
heap.Push(&idle, heap.Pop(&busy).(pair).i)
}
j := heap.Pop(&idle).(int)
if i == targetFriend {
return j
}
heap.Push(&busy, pair{leaving, j})
}
return -1
}
type hp struct{ sort.IntSlice }
func (h hp) Less(i, j int) bool { return h.IntSlice[i] < h.IntSlice[j] }
func (h *hp) Push(v any) { h.IntSlice = append(h.IntSlice, v.(int)) }
func (h *hp) Pop() any {
a := h.IntSlice
v := a[len(a)-1]
h.IntSlice = a[:len(a)-1]
return v
}
type pair struct{ t, i int }
type hp2 []pair
func (h hp2) Len() int { return len(h) }
func (h hp2) Less(i, j int) bool { return h[i].t < h[j].t || (h[i].t == h[j].t && h[i].i < h[j].i) }
func (h hp2) Swap(i, j int) { h[i], h[j] = h[j], h[i] }
func (h *hp2) Push(v any) { *h = append(*h, v.(pair)) }
func (h *hp2) Pop() any { a := *h; v := a[len(a)-1]; *h = a[:len(a)-1]; return v }
TypeScript
function smallestChair(times: number[][], targetFriend: number): number {
const n = times.length;
const idle = new MinPriorityQueue();
const busy = new MinPriorityQueue({ priority: v => v[0] });
for (let i = 0; i < n; ++i) {
times[i].push(i);
idle.enqueue(i);
}
times.sort((a, b) => a[0] - b[0]);
for (const [arrival, leaving, i] of times) {
while (busy.size() > 0 && busy.front().element[0] <= arrival) {
idle.enqueue(busy.dequeue().element[1]);
}
const j = idle.dequeue().element;
if (i === targetFriend) {
return j;
}
busy.enqueue([leaving, j]);
}
return -1;
}
JavaScript
/**
* @param {number[][]} times
* @param {number} targetFriend
* @return {number}
*/
var smallestChair = function (times, targetFriend) {
const n = times.length;
const idle = new MinPriorityQueue();
const busy = new MinPriorityQueue({ priority: v => v[0] });
for (let i = 0; i < n; ++i) {
times[i].push(i);
idle.enqueue(i);
}
times.sort((a, b) => a[0] - b[0]);
for (const [arrival, leaving, i] of times) {
while (busy.size() > 0 && busy.front().element[0] <= arrival) {
idle.enqueue(busy.dequeue().element[1]);
}
const j = idle.dequeue().element;
if (i === targetFriend) {
return j;
}
busy.enqueue([leaving, j]);
}
};