1852. Distinct Numbers in Each Subarray π ο
Descriptionο
You are given an integer array nums
of length n
and an integer k
. Your task is to find the number of distinct elements in every subarray of size k
within nums
.
Return an array ans
such that ans[i]
is the count of distinct elements in nums[i..(i + k - 1)]
for each index 0 <= i < n - k
.
Example 1:
Input: nums = [1,2,3,2,2,1,3], k = 3 Output: [3,2,2,2,3] Explanation: The number of distinct elements in each subarray goes as follows: - nums[0..2] = [1,2,3] so ans[0] = 3 - nums[1..3] = [2,3,2] so ans[1] = 2 - nums[2..4] = [3,2,2] so ans[2] = 2 - nums[3..5] = [2,2,1] so ans[3] = 2 - nums[4..6] = [2,1,3] so ans[4] = 3
Example 2:
Input: nums = [1,1,1,1,2,3,4], k = 4 Output: [1,2,3,4] Explanation: The number of distinct elements in each subarray goes as follows: - nums[0..3] = [1,1,1,1] so ans[0] = 1 - nums[1..4] = [1,1,1,2] so ans[1] = 2 - nums[2..5] = [1,1,2,3] so ans[2] = 3 - nums[3..6] = [1,2,3,4] so ans[3] = 4
Constraints:
1 <= k <= nums.length <= 105
1 <= nums[i] <= 105
Solutionsο
Solution 1: Sliding Window + Hash Tableο
We use a hash table $cnt$ to record the occurrence times of each number in the subarray of length $k$.
Next, we first traverse the first $k$ elements of the array, record the occurrence times of each element, and after the traversal, we take the size of the hash table as the first element of the answer array.
Then, we continue to traverse the array from the index $k$. Each time we traverse, we increase the occurrence times of the current element by one, and decrease the occurrence times of the element on the left of the current element by one. If the occurrence times of the left element become $0$ after subtraction, we remove it from the hash table. Then we take the size of the hash table as the next element of the answer array, and continue to traverse.
After the traversal, we return the answer array.
The time complexity is $O(n)$, and the space complexity is $O(k)$. Where $n$ is the length of the array $nums$, and $k$ is the parameter given by the problem.
Python3ο
class Solution:
def distinctNumbers(self, nums: List[int], k: int) -> List[int]:
cnt = Counter(nums[:k])
ans = [len(cnt)]
for i in range(k, len(nums)):
cnt[nums[i]] += 1
cnt[nums[i - k]] -= 1
if cnt[nums[i - k]] == 0:
cnt.pop(nums[i - k])
ans.append(len(cnt))
return ans
Javaο
class Solution {
public int[] distinctNumbers(int[] nums, int k) {
Map<Integer, Integer> cnt = new HashMap<>();
for (int i = 0; i < k; ++i) {
cnt.merge(nums[i], 1, Integer::sum);
}
int n = nums.length;
int[] ans = new int[n - k + 1];
ans[0] = cnt.size();
for (int i = k; i < n; ++i) {
cnt.merge(nums[i], 1, Integer::sum);
if (cnt.merge(nums[i - k], -1, Integer::sum) == 0) {
cnt.remove(nums[i - k]);
}
ans[i - k + 1] = cnt.size();
}
return ans;
}
}
C++ο
class Solution {
public:
vector<int> distinctNumbers(vector<int>& nums, int k) {
unordered_map<int, int> cnt;
for (int i = 0; i < k; ++i) {
++cnt[nums[i]];
}
int n = nums.size();
vector<int> ans;
ans.push_back(cnt.size());
for (int i = k; i < n; ++i) {
++cnt[nums[i]];
if (--cnt[nums[i - k]] == 0) {
cnt.erase(nums[i - k]);
}
ans.push_back(cnt.size());
}
return ans;
}
};
Goο
func distinctNumbers(nums []int, k int) []int {
cnt := map[int]int{}
for _, x := range nums[:k] {
cnt[x]++
}
ans := []int{len(cnt)}
for i := k; i < len(nums); i++ {
cnt[nums[i]]++
cnt[nums[i-k]]--
if cnt[nums[i-k]] == 0 {
delete(cnt, nums[i-k])
}
ans = append(ans, len(cnt))
}
return ans
}
TypeScriptο
function distinctNumbers(nums: number[], k: number): number[] {
const cnt: Map<number, number> = new Map();
for (let i = 0; i < k; ++i) {
cnt.set(nums[i], (cnt.get(nums[i]) ?? 0) + 1);
}
const ans: number[] = [cnt.size];
for (let i = k; i < nums.length; ++i) {
cnt.set(nums[i], (cnt.get(nums[i]) ?? 0) + 1);
cnt.set(nums[i - k], cnt.get(nums[i - k])! - 1);
if (cnt.get(nums[i - k]) === 0) {
cnt.delete(nums[i - k]);
}
ans.push(cnt.size);
}
return ans;
}
Solution 2: Sliding Window + Arrayο
We can also use an array to replace the hash table, which can improve performance to some extent.
The time complexity is $O(n)$, and the space complexity is $O(M)$. Where $n$ is the length of the array $nums$, and $M$ is the maximum value in the array $nums$. In this problem, $M \leq 10^5$.
Javaο
class Solution {
public int[] distinctNumbers(int[] nums, int k) {
int m = 0;
for (int x : nums) {
m = Math.max(m, x);
}
int[] cnt = new int[m + 1];
int v = 0;
for (int i = 0; i < k; ++i) {
if (++cnt[nums[i]] == 1) {
++v;
}
}
int n = nums.length;
int[] ans = new int[n - k + 1];
ans[0] = v;
for (int i = k; i < n; ++i) {
if (++cnt[nums[i]] == 1) {
++v;
}
if (--cnt[nums[i - k]] == 0) {
--v;
}
ans[i - k + 1] = v;
}
return ans;
}
}
C++ο
class Solution {
public:
vector<int> distinctNumbers(vector<int>& nums, int k) {
int m = *max_element(begin(nums), end(nums));
int cnt[m + 1];
memset(cnt, 0, sizeof(cnt));
int n = nums.size();
int v = 0;
vector<int> ans(n - k + 1);
for (int i = 0; i < k; ++i) {
if (++cnt[nums[i]] == 1) {
++v;
}
}
ans[0] = v;
for (int i = k; i < n; ++i) {
if (++cnt[nums[i]] == 1) {
++v;
}
if (--cnt[nums[i - k]] == 0) {
--v;
}
ans[i - k + 1] = v;
}
return ans;
}
};
Goο
func distinctNumbers(nums []int, k int) (ans []int) {
m := slices.Max(nums)
cnt := make([]int, m+1)
v := 0
for _, x := range nums[:k] {
cnt[x]++
if cnt[x] == 1 {
v++
}
}
ans = append(ans, v)
for i := k; i < len(nums); i++ {
cnt[nums[i]]++
if cnt[nums[i]] == 1 {
v++
}
cnt[nums[i-k]]--
if cnt[nums[i-k]] == 0 {
v--
}
ans = append(ans, v)
}
return
}
TypeScriptο
function distinctNumbers(nums: number[], k: number): number[] {
const m = Math.max(...nums);
const cnt: number[] = Array(m + 1).fill(0);
let v: number = 0;
for (let i = 0; i < k; ++i) {
if (++cnt[nums[i]] === 1) {
v++;
}
}
const ans: number[] = [v];
for (let i = k; i < nums.length; ++i) {
if (++cnt[nums[i]] === 1) {
v++;
}
if (--cnt[nums[i - k]] === 0) {
v--;
}
ans.push(v);
}
return ans;
}