35. Search Insert Position

中文文档

Description

Given a sorted array of distinct integers and a target value, return the index if the target is found. If not, return the index where it would be if it were inserted in order.

You must write an algorithm with O(log n) runtime complexity.

 

Example 1:

Input: nums = [1,3,5,6], target = 5
Output: 2

Example 2:

Input: nums = [1,3,5,6], target = 2
Output: 1

Example 3:

Input: nums = [1,3,5,6], target = 7
Output: 4

 

Constraints:

  • 1 <= nums.length <= 104
  • -104 <= nums[i] <= 104
  • nums contains distinct values sorted in ascending order.
  • -104 <= target <= 104

Solutions

Solution 2: Binary Search (Built-in Function)

We can also directly use the built-in function for binary search.

The time complexity is $O(\log n)$, where $n$ is the length of the array $nums$. The space complexity is $O(1)$.

Python3

class Solution:
    def searchInsert(self, nums: List[int], target: int) -> int:
        return bisect_left(nums, target)

Java

class Solution {
    public int searchInsert(int[] nums, int target) {
        int i = Arrays.binarySearch(nums, target);
        return i < 0 ? -i - 1 : i;
    }
}

C++

class Solution {
public:
    int searchInsert(vector<int>& nums, int target) {
        return lower_bound(nums.begin(), nums.end(), target) - nums.begin();
    }
};

Go

func searchInsert(nums []int, target int) int {
	return sort.SearchInts(nums, target)
}