1803. Count Pairs With XOR in a Range
Description
Given a (0-indexed) integer array nums
and two integers low
and high
, return the number of nice pairs.
A nice pair is a pair (i, j)
where 0 <= i < j < nums.length
and low <= (nums[i] XOR nums[j]) <= high
.
Example 1:
Input: nums = [1,4,2,7], low = 2, high = 6 Output: 6 Explanation: All nice pairs (i, j) are as follows: - (0, 1): nums[0] XOR nums[1] = 5 - (0, 2): nums[0] XOR nums[2] = 3 - (0, 3): nums[0] XOR nums[3] = 6 - (1, 2): nums[1] XOR nums[2] = 6 - (1, 3): nums[1] XOR nums[3] = 3 - (2, 3): nums[2] XOR nums[3] = 5
Example 2:
Input: nums = [9,8,4,2,1], low = 5, high = 14 Output: 8 Explanation: All nice pairs (i, j) are as follows: - (0, 2): nums[0] XOR nums[2] = 13 - (0, 3): nums[0] XOR nums[3] = 11 - (0, 4): nums[0] XOR nums[4] = 8 - (1, 2): nums[1] XOR nums[2] = 12 - (1, 3): nums[1] XOR nums[3] = 10 - (1, 4): nums[1] XOR nums[4] = 9 - (2, 3): nums[2] XOR nums[3] = 6 - (2, 4): nums[2] XOR nums[4] = 5
Constraints:
<li><code>1 <= nums.length <= 2 * 10<sup>4</sup></code></li>
<li><code>1 <= nums[i] <= 2 * 10<sup>4</sup></code></li>
<li><code>1 <= low <= high <= 2 * 10<sup>4</sup></code></li>
Solutions
Solution 1: 0-1 Trie
For this kind of problem that counts the interval $[low, high]$, we can consider converting it into counting $[0, high]$ and $[0, low - 1]$, and then subtracting the latter from the former to get the answer.
In this problem, we can count how many pairs of numbers have an XOR value less than $high+1$, and then count how many pairs of numbers have an XOR value less than $low$. The difference between these two counts is the number of pairs whose XOR value is in the interval $[low, high]$.
Moreover, for array XOR counting problems, we can usually use a "0-1 Trie" to solve them.
The definition of the Trie node is as follows:
children[0]
andchildren[1]
represent the left and right child nodes of the current node, respectively;cnt
represents the number of numbers ending with the current node.
In the Trie, we also define the following two functions:
One function is $insert(x)$, which inserts the number $x$ into the Trie. This function inserts the number $x$ into the "0-1 Trie" in the order of binary bits from high to low. If the current binary bit is $0$, it is inserted into the left child node, otherwise, it is inserted into the right child node. Then the count value $cnt$ of the node is increased by $1$.
Another function is $search(x, limit)$, which searches for the count of numbers in the Trie that have an XOR value with $x$ less than $limit$. This function starts from the root node node
of the Trie, traverses the binary bits of $x$ from high to low, and denotes the current binary bit of $x$ as $v$. If the current binary bit of $limit$ is $1$, we can directly add the count value $cnt$ of the child node that has the same binary bit $v$ as $x$ to the answer, and then move the current node to the child node that has a different binary bit $v$ from $x$, i.e., node = node.children[v ^ 1]
. Continue to traverse the next bit. If the current binary bit of $limit$ is $0$, we can only move the current node to the child node that has the same binary bit $v$ as $x$, i.e., node = node.children[v]
. Continue to traverse the next bit. After traversing the binary bits of $x$, return the answer.
With the above two functions, we can solve this problem.
We traverse the array nums
. For each number $x$, we first search in the Trie for the count of numbers that have an XOR value with $x$ less than $high+1$, and then search in the Trie for the count of pairs that have an XOR value with $x$ less than $low$, and add the difference between the two counts to the answer. Then insert $x$ into the Trie. Continue to traverse the next number $x$ until the array nums
is traversed. Finally, return the answer.
The time complexity is $O(n \times \log M)$, and the space complexity is $O(n \times \log M)$. Here, $n$ is the length of the array nums
, and $M$ is the maximum value in the array nums
. In this problem, we directly take $\log M = 16$.
Python3
class Trie:
def __init__(self):
self.children = [None] * 2
self.cnt = 0
def insert(self, x):
node = self
for i in range(15, -1, -1):
v = x >> i & 1
if node.children[v] is None:
node.children[v] = Trie()
node = node.children[v]
node.cnt += 1
def search(self, x, limit):
node = self
ans = 0
for i in range(15, -1, -1):
if node is None:
return ans
v = x >> i & 1
if limit >> i & 1:
if node.children[v]:
ans += node.children[v].cnt
node = node.children[v ^ 1]
else:
node = node.children[v]
return ans
class Solution:
def countPairs(self, nums: List[int], low: int, high: int) -> int:
ans = 0
tree = Trie()
for x in nums:
ans += tree.search(x, high + 1) - tree.search(x, low)
tree.insert(x)
return ans
Java
class Trie {
private Trie[] children = new Trie[2];
private int cnt;
public void insert(int x) {
Trie node = this;
for (int i = 15; i >= 0; --i) {
int v = (x >> i) & 1;
if (node.children[v] == null) {
node.children[v] = new Trie();
}
node = node.children[v];
++node.cnt;
}
}
public int search(int x, int limit) {
Trie node = this;
int ans = 0;
for (int i = 15; i >= 0 && node != null; --i) {
int v = (x >> i) & 1;
if (((limit >> i) & 1) == 1) {
if (node.children[v] != null) {
ans += node.children[v].cnt;
}
node = node.children[v ^ 1];
} else {
node = node.children[v];
}
}
return ans;
}
}
class Solution {
public int countPairs(int[] nums, int low, int high) {
Trie trie = new Trie();
int ans = 0;
for (int x : nums) {
ans += trie.search(x, high + 1) - trie.search(x, low);
trie.insert(x);
}
return ans;
}
}
C++
class Trie {
public:
Trie()
: children(2)
, cnt(0) {}
void insert(int x) {
Trie* node = this;
for (int i = 15; ~i; --i) {
int v = x >> i & 1;
if (!node->children[v]) {
node->children[v] = new Trie();
}
node = node->children[v];
++node->cnt;
}
}
int search(int x, int limit) {
Trie* node = this;
int ans = 0;
for (int i = 15; ~i && node; --i) {
int v = x >> i & 1;
if (limit >> i & 1) {
if (node->children[v]) {
ans += node->children[v]->cnt;
}
node = node->children[v ^ 1];
} else {
node = node->children[v];
}
}
return ans;
}
private:
vector<Trie*> children;
int cnt;
};
class Solution {
public:
int countPairs(vector<int>& nums, int low, int high) {
Trie* tree = new Trie();
int ans = 0;
for (int& x : nums) {
ans += tree->search(x, high + 1) - tree->search(x, low);
tree->insert(x);
}
return ans;
}
};
Go
type Trie struct {
children [2]*Trie
cnt int
}
func newTrie() *Trie {
return &Trie{}
}
func (this *Trie) insert(x int) {
node := this
for i := 15; i >= 0; i-- {
v := (x >> i) & 1
if node.children[v] == nil {
node.children[v] = newTrie()
}
node = node.children[v]
node.cnt++
}
}
func (this *Trie) search(x, limit int) (ans int) {
node := this
for i := 15; i >= 0 && node != nil; i-- {
v := (x >> i) & 1
if (limit >> i & 1) == 1 {
if node.children[v] != nil {
ans += node.children[v].cnt
}
node = node.children[v^1]
} else {
node = node.children[v]
}
}
return
}
func countPairs(nums []int, low int, high int) (ans int) {
tree := newTrie()
for _, x := range nums {
ans += tree.search(x, high+1) - tree.search(x, low)
tree.insert(x)
}
return
}