3259. Maximum Energy Boost From Two Drinks
Description
You are given two integer arrays energyDrinkA
and energyDrinkB
of the same length n
by a futuristic sports scientist. These arrays represent the energy boosts per hour provided by two different energy drinks, A and B, respectively.
You want to maximize your total energy boost by drinking one energy drink per hour. However, if you want to switch from consuming one energy drink to the other, you need to wait for one hour to cleanse your system (meaning you won't get any energy boost in that hour).
Return the maximum total energy boost you can gain in the next n
hours.
Note that you can start consuming either of the two energy drinks.
Example 1:
Input: energyDrinkA = [1,3,1], energyDrinkB = [3,1,1]
Output: 5
Explanation:
To gain an energy boost of 5, drink only the energy drink A (or only B).
Example 2:
Input: energyDrinkA = [4,1,1], energyDrinkB = [1,1,3]
Output: 7
Explanation:
To gain an energy boost of 7:
- Drink the energy drink A for the first hour.
- Switch to the energy drink B and we lose the energy boost of the second hour.
- Gain the energy boost of the drink B in the third hour.
Constraints:
n == energyDrinkA.length == energyDrinkB.length
3 <= n <= 105
1 <= energyDrinkA[i], energyDrinkB[i] <= 105
Solutions
Solution 1: Dynamic Programming
We define $f[i][0]$ to represent the maximum boost energy obtained by choosing energy drink A at the $i$-th hour, and $f[i][1]$ to represent the maximum boost energy obtained by choosing energy drink B at the $i$-th hour. Initially, $f[0][0] = \textit{energyDrinkA}[0]$, $f[0][1] = \textit{energyDrinkB}[0]$. The answer is $\max(f[n - 1][0], f[n - 1][1])$.
For $i > 0$, we have the following state transition equations:
$$ \begin{aligned} f[i][0] & = \max(f[i - 1][0] + \textit{energyDrinkA}[i], f[i - 1][1]) \ f[i][1] & = \max(f[i - 1][1] + \textit{energyDrinkB}[i], f[i - 1][0]) \end{aligned} $$
Finally, return $\max(f[n - 1][0], f[n - 1][1])$.
The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the length of the array.
Python3
class Solution:
def maxEnergyBoost(self, energyDrinkA: List[int], energyDrinkB: List[int]) -> int:
n = len(energyDrinkA)
f = [[0] * 2 for _ in range(n)]
f[0][0] = energyDrinkA[0]
f[0][1] = energyDrinkB[0]
for i in range(1, n):
f[i][0] = max(f[i - 1][0] + energyDrinkA[i], f[i - 1][1])
f[i][1] = max(f[i - 1][1] + energyDrinkB[i], f[i - 1][0])
return max(f[n - 1])
Java
class Solution {
public long maxEnergyBoost(int[] energyDrinkA, int[] energyDrinkB) {
int n = energyDrinkA.length;
long[][] f = new long[n][2];
f[0][0] = energyDrinkA[0];
f[0][1] = energyDrinkB[0];
for (int i = 1; i < n; ++i) {
f[i][0] = Math.max(f[i - 1][0] + energyDrinkA[i], f[i - 1][1]);
f[i][1] = Math.max(f[i - 1][1] + energyDrinkB[i], f[i - 1][0]);
}
return Math.max(f[n - 1][0], f[n - 1][1]);
}
}
C++
class Solution {
public:
long long maxEnergyBoost(vector<int>& energyDrinkA, vector<int>& energyDrinkB) {
int n = energyDrinkA.size();
vector<vector<long long>> f(n, vector<long long>(2));
f[0][0] = energyDrinkA[0];
f[0][1] = energyDrinkB[0];
for (int i = 1; i < n; ++i) {
f[i][0] = max(f[i - 1][0] + energyDrinkA[i], f[i - 1][1]);
f[i][1] = max(f[i - 1][1] + energyDrinkB[i], f[i - 1][0]);
}
return max(f[n - 1][0], f[n - 1][1]);
}
};
Go
func maxEnergyBoost(energyDrinkA []int, energyDrinkB []int) int64 {
n := len(energyDrinkA)
f := make([][2]int64, n)
f[0][0] = int64(energyDrinkA[0])
f[0][1] = int64(energyDrinkB[0])
for i := 1; i < n; i++ {
f[i][0] = max(f[i-1][0]+int64(energyDrinkA[i]), f[i-1][1])
f[i][1] = max(f[i-1][1]+int64(energyDrinkB[i]), f[i-1][0])
}
return max(f[n-1][0], f[n-1][1])
}
TypeScript
function maxEnergyBoost(energyDrinkA: number[], energyDrinkB: number[]): number {
const n = energyDrinkA.length;
const f: number[][] = Array.from({ length: n }, () => [0, 0]);
f[0][0] = energyDrinkA[0];
f[0][1] = energyDrinkB[0];
for (let i = 1; i < n; i++) {
f[i][0] = Math.max(f[i - 1][0] + energyDrinkA[i], f[i - 1][1]);
f[i][1] = Math.max(f[i - 1][1] + energyDrinkB[i], f[i - 1][0]);
}
return Math.max(...f[n - 1]!);
}
Solution 2: Dynamic Programming (Space Optimization)
We notice that the state $f[i]$ is only related to $f[i - 1]$ and not to $f[i - 2]$. Therefore, we can use only two variables $f$ and $g$ to maintain the state, thus optimizing the space complexity to $O(1)$.
The time complexity is $O(n)$, where $n$ is the length of the array. The space complexity is $O(1)$.
Python3
class Solution:
def maxEnergyBoost(self, energyDrinkA: List[int], energyDrinkB: List[int]) -> int:
f, g = energyDrinkA[0], energyDrinkB[0]
for a, b in zip(energyDrinkA[1:], energyDrinkB[1:]):
f, g = max(f + a, g), max(g + b, f)
return max(f, g)
Java
class Solution {
public long maxEnergyBoost(int[] energyDrinkA, int[] energyDrinkB) {
int n = energyDrinkA.length;
long f = energyDrinkA[0], g = energyDrinkB[0];
for (int i = 1; i < n; ++i) {
long ff = Math.max(f + energyDrinkA[i], g);
g = Math.max(g + energyDrinkB[i], f);
f = ff;
}
return Math.max(f, g);
}
}
C++
class Solution {
public:
long long maxEnergyBoost(vector<int>& energyDrinkA, vector<int>& energyDrinkB) {
int n = energyDrinkA.size();
long long f = energyDrinkA[0], g = energyDrinkB[0];
for (int i = 1; i < n; ++i) {
long long ff = max(f + energyDrinkA[i], g);
g = max(g + energyDrinkB[i], f);
f = ff;
}
return max(f, g);
}
};
Go
func maxEnergyBoost(energyDrinkA []int, energyDrinkB []int) int64 {
n := len(energyDrinkA)
f, g := energyDrinkA[0], energyDrinkB[0]
for i := 1; i < n; i++ {
f, g = max(f+energyDrinkA[i], g), max(g+energyDrinkB[i], f)
}
return int64(max(f, g))
}
TypeScript
function maxEnergyBoost(energyDrinkA: number[], energyDrinkB: number[]): number {
const n = energyDrinkA.length;
let [f, g] = [energyDrinkA[0], energyDrinkB[0]];
for (let i = 1; i < n; ++i) {
[f, g] = [Math.max(f + energyDrinkA[i], g), Math.max(g + energyDrinkB[i], f)];
}
return Math.max(f, g);
}