1235. Maximum Profit in Job Scheduling
Description
We have n
jobs, where every job is scheduled to be done from startTime[i]
to endTime[i]
, obtaining a profit of profit[i]
.
You're given the startTime
, endTime
and profit
arrays, return the maximum profit you can take such that there are no two jobs in the subset with overlapping time range.
If you choose a job that ends at time X
you will be able to start another job that starts at time X
.
Example 1:
Input: startTime = [1,2,3,3], endTime = [3,4,5,6], profit = [50,10,40,70] Output: 120 Explanation: The subset chosen is the first and fourth job. Time range [1-3]+[3-6] , we get profit of 120 = 50 + 70.
Example 2:
Input: startTime = [1,2,3,4,6], endTime = [3,5,10,6,9], profit = [20,20,100,70,60] Output: 150 Explanation: The subset chosen is the first, fourth and fifth job. Profit obtained 150 = 20 + 70 + 60.
Example 3:
Input: startTime = [1,1,1], endTime = [2,3,4], profit = [5,6,4] Output: 6
Constraints:
1 <= startTime.length == endTime.length == profit.length <= 5 * 104
1 <= startTime[i] < endTime[i] <= 109
1 <= profit[i] <= 104
Solutions
Solution 1: Memoization Search + Binary Search
First, we sort the jobs by start time in ascending order, then design a function $dfs(i)$ to represent the maximum profit that can be obtained starting from the $i$-th job. The answer is $dfs(0)$.
The calculation process of function $dfs(i)$ is as follows:
For the $i$-th job, we can choose to do it or not. If we don't do it, the maximum profit is $dfs(i + 1)$; if we do it, we can use binary search to find the first job that starts after the end time of the $i$-th job, denoted as $j$, then the maximum profit is $profit[i] + dfs(j)$. We take the larger of the two. That is:
$$ dfs(i)=\max(dfs(i+1),profit[i]+dfs(j)) $$
Where $j$ is the smallest index that satisfies $startTime[j] \ge endTime[i]$.
In this process, we can use memoization search to save the answer of each state to avoid repeated calculations.
The time complexity is $O(n \times \log n)$, where $n$ is the number of jobs.
Python3
class Solution:
def jobScheduling(
self, startTime: List[int], endTime: List[int], profit: List[int]
) -> int:
@cache
def dfs(i):
if i >= n:
return 0
_, e, p = jobs[i]
j = bisect_left(jobs, e, lo=i + 1, key=lambda x: x[0])
return max(dfs(i + 1), p + dfs(j))
jobs = sorted(zip(startTime, endTime, profit))
n = len(profit)
return dfs(0)
Java
class Solution {
private int[][] jobs;
private int[] f;
private int n;
public int jobScheduling(int[] startTime, int[] endTime, int[] profit) {
n = profit.length;
jobs = new int[n][3];
for (int i = 0; i < n; ++i) {
jobs[i] = new int[] {startTime[i], endTime[i], profit[i]};
}
Arrays.sort(jobs, (a, b) -> a[0] - b[0]);
f = new int[n];
return dfs(0);
}
private int dfs(int i) {
if (i >= n) {
return 0;
}
if (f[i] != 0) {
return f[i];
}
int e = jobs[i][1], p = jobs[i][2];
int j = search(jobs, e, i + 1);
int ans = Math.max(dfs(i + 1), p + dfs(j));
f[i] = ans;
return ans;
}
private int search(int[][] jobs, int x, int i) {
int left = i, right = n;
while (left < right) {
int mid = (left + right) >> 1;
if (jobs[mid][0] >= x) {
right = mid;
} else {
left = mid + 1;
}
}
return left;
}
}
C++
class Solution {
public:
int jobScheduling(vector<int>& startTime, vector<int>& endTime, vector<int>& profit) {
int n = profit.size();
vector<tuple<int, int, int>> jobs(n);
for (int i = 0; i < n; ++i) jobs[i] = {startTime[i], endTime[i], profit[i]};
sort(jobs.begin(), jobs.end());
vector<int> f(n);
function<int(int)> dfs = [&](int i) -> int {
if (i >= n) return 0;
if (f[i]) return f[i];
auto [_, e, p] = jobs[i];
tuple<int, int, int> t{e, 0, 0};
int j = lower_bound(jobs.begin() + i + 1, jobs.end(), t, [&](auto& l, auto& r) -> bool { return get<0>(l) < get<0>(r); }) - jobs.begin();
int ans = max(dfs(i + 1), p + dfs(j));
f[i] = ans;
return ans;
};
return dfs(0);
}
};
Go
func jobScheduling(startTime []int, endTime []int, profit []int) int {
n := len(profit)
type tuple struct{ s, e, p int }
jobs := make([]tuple, n)
for i, p := range profit {
jobs[i] = tuple{startTime[i], endTime[i], p}
}
sort.Slice(jobs, func(i, j int) bool { return jobs[i].s < jobs[j].s })
f := make([]int, n)
var dfs func(int) int
dfs = func(i int) int {
if i >= n {
return 0
}
if f[i] != 0 {
return f[i]
}
j := sort.Search(n, func(j int) bool { return jobs[j].s >= jobs[i].e })
ans := max(dfs(i+1), jobs[i].p+dfs(j))
f[i] = ans
return ans
}
return dfs(0)
}
TypeScript
function jobScheduling(startTime: number[], endTime: number[], profit: number[]): number {
const n = startTime.length;
const f = new Array(n).fill(0);
const idx = new Array(n).fill(0).map((_, i) => i);
idx.sort((i, j) => startTime[i] - startTime[j]);
const search = (x: number) => {
let l = 0;
let r = n;
while (l < r) {
const mid = (l + r) >> 1;
if (startTime[idx[mid]] >= x) {
r = mid;
} else {
l = mid + 1;
}
}
return l;
};
const dfs = (i: number): number => {
if (i >= n) {
return 0;
}
if (f[i] !== 0) {
return f[i];
}
const j = search(endTime[idx[i]]);
return (f[i] = Math.max(dfs(i + 1), dfs(j) + profit[idx[i]]));
};
return dfs(0);
}
Solution 2: Dynamic Programming + Binary Search
We can also change the memoization search in Solution 1 to dynamic programming.
First, sort the jobs, this time we sort by end time in ascending order, then define $dp[i]$, which represents the maximum profit that can be obtained from the first $i$ jobs. The answer is $dp[n]$. Initialize $dp[0]=0$.
For the $i$-th job, we can choose to do it or not. If we don't do it, the maximum profit is $dp[i]$; if we do it, we can use binary search to find the last job that ends before the start time of the $i$-th job, denoted as $j$, then the maximum profit is $profit[i] + dp[j]$. We take the larger of the two. That is:
$$ dp[i+1] = \max(dp[i], profit[i] + dp[j]) $$
Where $j$ is the largest index that satisfies $endTime[j] \leq startTime[i]$.
The time complexity is $O(n \times \log n)$, where $n$ is the number of jobs.
Similar problems:
Python3
class Solution:
def jobScheduling(
self, startTime: List[int], endTime: List[int], profit: List[int]
) -> int:
jobs = sorted(zip(endTime, startTime, profit))
n = len(profit)
dp = [0] * (n + 1)
for i, (_, s, p) in enumerate(jobs):
j = bisect_right(jobs, s, hi=i, key=lambda x: x[0])
dp[i + 1] = max(dp[i], dp[j] + p)
return dp[n]
Java
class Solution {
public int jobScheduling(int[] startTime, int[] endTime, int[] profit) {
int n = profit.length;
int[][] jobs = new int[n][3];
for (int i = 0; i < n; ++i) {
jobs[i] = new int[] {startTime[i], endTime[i], profit[i]};
}
Arrays.sort(jobs, (a, b) -> a[1] - b[1]);
int[] dp = new int[n + 1];
for (int i = 0; i < n; ++i) {
int j = search(jobs, jobs[i][0], i);
dp[i + 1] = Math.max(dp[i], dp[j] + jobs[i][2]);
}
return dp[n];
}
private int search(int[][] jobs, int x, int n) {
int left = 0, right = n;
while (left < right) {
int mid = (left + right) >> 1;
if (jobs[mid][1] > x) {
right = mid;
} else {
left = mid + 1;
}
}
return left;
}
}
C++
class Solution {
public:
int jobScheduling(vector<int>& startTime, vector<int>& endTime, vector<int>& profit) {
int n = profit.size();
vector<tuple<int, int, int>> jobs(n);
for (int i = 0; i < n; ++i) jobs[i] = {endTime[i], startTime[i], profit[i]};
sort(jobs.begin(), jobs.end());
vector<int> dp(n + 1);
for (int i = 0; i < n; ++i) {
auto [_, s, p] = jobs[i];
int j = upper_bound(jobs.begin(), jobs.begin() + i, s, [&](int x, auto& job) -> bool { return x < get<0>(job); }) - jobs.begin();
dp[i + 1] = max(dp[i], dp[j] + p);
}
return dp[n];
}
};
Go
func jobScheduling(startTime []int, endTime []int, profit []int) int {
n := len(profit)
type tuple struct{ s, e, p int }
jobs := make([]tuple, n)
for i, p := range profit {
jobs[i] = tuple{startTime[i], endTime[i], p}
}
sort.Slice(jobs, func(i, j int) bool { return jobs[i].e < jobs[j].e })
dp := make([]int, n+1)
for i, job := range jobs {
j := sort.Search(i, func(k int) bool { return jobs[k].e > job.s })
dp[i+1] = max(dp[i], dp[j]+job.p)
}
return dp[n]
}
TypeScript
function jobScheduling(startTime: number[], endTime: number[], profit: number[]): number {
const n = profit.length;
const jobs: [number, number, number][] = Array.from({ length: n }, (_, i) => [
startTime[i],
endTime[i],
profit[i],
]);
jobs.sort((a, b) => a[1] - b[1]);
const dp: number[] = Array.from({ length: n + 1 }, () => 0);
const search = (x: number, right: number): number => {
let left = 0;
while (left < right) {
const mid = (left + right) >> 1;
if (jobs[mid][1] > x) {
right = mid;
} else {
left = mid + 1;
}
}
return left;
};
for (let i = 0; i < n; ++i) {
const j = search(jobs[i][0], i);
dp[i + 1] = Math.max(dp[i], dp[j] + jobs[i][2]);
}
return dp[n];
}
Swift
class Solution {
func binarySearch<T: Comparable>(inputArr: [T], searchItem: T) -> Int? {
var lowerIndex = 0
var upperIndex = inputArr.count - 1
while lowerIndex < upperIndex {
let currentIndex = (lowerIndex + upperIndex) / 2
if inputArr[currentIndex] <= searchItem {
lowerIndex = currentIndex + 1
} else {
upperIndex = currentIndex
}
}
if inputArr[upperIndex] <= searchItem {
return upperIndex + 1
}
return lowerIndex
}
func jobScheduling(_ startTime: [Int], _ endTime: [Int], _ profit: [Int]) -> Int {
let zipList = zip(zip(startTime, endTime), profit)
var table: [(startTime: Int, endTime: Int, profit: Int, cumsum: Int)] = []
for ((x, y), z) in zipList {
table.append((x, y, z, 0))
}
table.sort(by: { $0.endTime < $1.endTime })
let sortedEndTime = endTime.sorted()
var profits: [Int] = [0]
for iJob in table {
let index: Int! = binarySearch(inputArr: sortedEndTime, searchItem: iJob.startTime)
if profits.last! < profits[index] + iJob.profit {
profits.append(profits[index] + iJob.profit)
} else {
profits.append(profits.last!)
}
}
return profits.last!
}
}