1588. Sum of All Odd Length Subarrays
Description
Given an array of positive integers arr
, return the sum of all possible odd-length subarrays of arr
.
A subarray is a contiguous subsequence of the array.
Example 1:
Input: arr = [1,4,2,5,3] Output: 58 Explanation: The odd-length subarrays of arr and their sums are: [1] = 1 [4] = 4 [2] = 2 [5] = 5 [3] = 3 [1,4,2] = 7 [4,2,5] = 11 [2,5,3] = 10 [1,4,2,5,3] = 15 If we add all these together we get 1 + 4 + 2 + 5 + 3 + 7 + 11 + 10 + 15 = 58
Example 2:
Input: arr = [1,2] Output: 3 Explanation: There are only 2 subarrays of odd length, [1] and [2]. Their sum is 3.
Example 3:
Input: arr = [10,11,12] Output: 66
Constraints:
1 <= arr.length <= 100
1 <= arr[i] <= 1000
Follow up:
Could you solve this problem in O(n) time complexity?
Solutions
Solution 1: Dynamic Programming
We define two arrays $f$ and $g$ of length $n$, where $f[i]$ represents the sum of subarrays ending at $\textit{arr}[i]$ with odd lengths, and $g[i]$ represents the sum of subarrays ending at $\textit{arr}[i]$ with even lengths. Initially, $f[0] = \textit{arr}[0]$, and $g[0] = 0$. The answer is $\sum_{i=0}^{n-1} f[i]$.
When $i > 0$, consider how $f[i]$ and $g[i]$ transition:
For the state $f[i]$, the element $\textit{arr}[i]$ can form an odd-length subarray with the previous $g[i-1]$. The number of such subarrays is $(i / 2) + 1$, so $f[i] = g[i-1] + \textit{arr}[i] \times ((i / 2) + 1)$.
For the state $g[i]$, when $i = 0$, there are no even-length subarrays, so $g[0] = 0$. When $i > 0$, the element $\textit{arr}[i]$ can form an even-length subarray with the previous $f[i-1]$. The number of such subarrays is $(i + 1) / 2$, so $g[i] = f[i-1] + \textit{arr}[i] \times ((i + 1) / 2)$.
The final answer is $\sum_{i=0}^{n-1} f[i]$.
The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the length of the array $\textit{arr}$.
Python3
class Solution:
def sumOddLengthSubarrays(self, arr: List[int]) -> int:
n = len(arr)
f = [0] * n
g = [0] * n
ans = f[0] = arr[0]
for i in range(1, n):
f[i] = g[i - 1] + arr[i] * (i // 2 + 1)
g[i] = f[i - 1] + arr[i] * ((i + 1) // 2)
ans += f[i]
return ans
Java
class Solution {
public int sumOddLengthSubarrays(int[] arr) {
int n = arr.length;
int[] f = new int[n];
int[] g = new int[n];
int ans = f[0] = arr[0];
for (int i = 1; i < n; ++i) {
f[i] = g[i - 1] + arr[i] * (i / 2 + 1);
g[i] = f[i - 1] + arr[i] * ((i + 1) / 2);
ans += f[i];
}
return ans;
}
}
C++
class Solution {
public:
int sumOddLengthSubarrays(vector<int>& arr) {
int n = arr.size();
vector<int> f(n, arr[0]);
vector<int> g(n);
int ans = f[0];
for (int i = 1; i < n; ++i) {
f[i] = g[i - 1] + arr[i] * (i / 2 + 1);
g[i] = f[i - 1] + arr[i] * ((i + 1) / 2);
ans += f[i];
}
return ans;
}
};
Go
func sumOddLengthSubarrays(arr []int) (ans int) {
n := len(arr)
f := make([]int, n)
g := make([]int, n)
f[0] = arr[0]
ans = f[0]
for i := 1; i < n; i++ {
f[i] = g[i-1] + arr[i]*(i/2+1)
g[i] = f[i-1] + arr[i]*((i+1)/2)
ans += f[i]
}
return
}
TypeScript
function sumOddLengthSubarrays(arr: number[]): number {
const n = arr.length;
const f: number[] = Array(n).fill(arr[0]);
const g: number[] = Array(n).fill(0);
let ans = f[0];
for (let i = 1; i < n; ++i) {
f[i] = g[i - 1] + arr[i] * ((i >> 1) + 1);
g[i] = f[i - 1] + arr[i] * ((i + 1) >> 1);
ans += f[i];
}
return ans;
}
Rust
impl Solution {
pub fn sum_odd_length_subarrays(arr: Vec<i32>) -> i32 {
let n = arr.len();
let mut f = vec![0; n];
let mut g = vec![0; n];
let mut ans = arr[0];
f[0] = arr[0];
for i in 1..n {
f[i] = g[i - 1] + arr[i] * ((i as i32) / 2 + 1);
g[i] = f[i - 1] + arr[i] * (((i + 1) as i32) / 2);
ans += f[i];
}
ans
}
}
C
int sumOddLengthSubarrays(int* arr, int arrSize) {
int n = arrSize;
int f[n];
int g[n];
int ans = f[0] = arr[0];
g[0] = 0;
for (int i = 1; i < n; ++i) {
f[i] = g[i - 1] + arr[i] * (i / 2 + 1);
g[i] = f[i - 1] + arr[i] * ((i + 1) / 2);
ans += f[i];
}
return ans;
}
Solution 2: Dynamic Programming (Space Optimization)
We notice that the values of $f[i]$ and $g[i]$ only depend on $f[i - 1]$ and $g[i - 1]$. Therefore, we can use two variables $f$ and $g$ to record the values of $f[i - 1]$ and $g[i - 1]$, respectively, thus optimizing the space complexity.
The time complexity is $O(n)$, and the space complexity is $O(1)$.
Python3
class Solution:
def sumOddLengthSubarrays(self, arr: List[int]) -> int:
ans, f, g = arr[0], arr[0], 0
for i in range(1, len(arr)):
ff = g + arr[i] * (i // 2 + 1)
gg = f + arr[i] * ((i + 1) // 2)
f, g = ff, gg
ans += f
return ans
Java
class Solution {
public int sumOddLengthSubarrays(int[] arr) {
int ans = arr[0], f = arr[0], g = 0;
for (int i = 1; i < arr.length; ++i) {
int ff = g + arr[i] * (i / 2 + 1);
int gg = f + arr[i] * ((i + 1) / 2);
f = ff;
g = gg;
ans += f;
}
return ans;
}
}
C++
class Solution {
public:
int sumOddLengthSubarrays(vector<int>& arr) {
int ans = 0, f = 0, g = 0;
for (int i = 0; i < arr.size(); ++i) {
int ff = g + arr[i] * (i / 2 + 1);
int gg = i ? f + arr[i] * ((i + 1) / 2) : 0;
f = ff;
g = gg;
ans += f;
}
return ans;
}
};
Go
func sumOddLengthSubarrays(arr []int) (ans int) {
f, g := arr[0], 0
ans = f
for i := 1; i < len(arr); i++ {
ff := g + arr[i]*(i/2+1)
gg := f + arr[i]*((i+1)/2)
f, g = ff, gg
ans += f
}
return
}
TypeScript
function sumOddLengthSubarrays(arr: number[]): number {
const n = arr.length;
let [ans, f, g] = [arr[0], arr[0], 0];
for (let i = 1; i < n; ++i) {
const ff = g + arr[i] * (Math.floor(i / 2) + 1);
const gg = f + arr[i] * Math.floor((i + 1) / 2);
[f, g] = [ff, gg];
ans += f;
}
return ans;
}
Rust
impl Solution {
pub fn sum_odd_length_subarrays(arr: Vec<i32>) -> i32 {
let mut ans = arr[0];
let mut f = arr[0];
let mut g = 0;
for i in 1..arr.len() {
let ff = g + arr[i] * ((i as i32) / 2 + 1);
let gg = f + arr[i] * (((i + 1) as i32) / 2);
f = ff;
g = gg;
ans += f;
}
ans
}
}
C
int sumOddLengthSubarrays(int* arr, int arrSize) {
int ans = arr[0], f = arr[0], g = 0;
for (int i = 1; i < arrSize; ++i) {
int ff = g + arr[i] * (i / 2 + 1);
int gg = f + arr[i] * ((i + 1) / 2);
f = ff;
g = gg;
ans += f;
}
return ans;
}